2022年廣西南寧市三中數學高三上期末考試試題含解析_第1頁
2022年廣西南寧市三中數學高三上期末考試試題含解析_第2頁
2022年廣西南寧市三中數學高三上期末考試試題含解析_第3頁
2022年廣西南寧市三中數學高三上期末考試試題含解析_第4頁
2022年廣西南寧市三中數學高三上期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.2.執行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.633.在中,內角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.4.設復數滿足,在復平面內對應的點為,則不可能為()A. B. C. D.5.設,點,,,,設對一切都有不等式成立,則正整數的最小值為()A. B. C. D.6.秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.7.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.48.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.在各項均為正數的等比數列中,若,則()A. B.6 C.4 D.510.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)11.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.12.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.展開式中,含項的系數為______.14.已知復數滿足(為虛數單位),則復數的實部為____________.15.的展開式中的常數項為_______.16.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求的值;(2)令在上最小值為,證明:.18.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.19.(12分)是數列的前項和,且.(1)求數列的通項公式;(2)若,求數列中最小的項.20.(12分)如圖,三棱柱中,側面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設,若直線與平面所成的角為,求二面角的正弦值.21.(12分)在中,內角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.22.(10分)已知函數,當時,有極大值3;(1)求,的值;(2)求函數的極小值及單調區間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.2、B【解析】

根據程序框圖中的循環結構的運算,直至滿足條件退出循環體,即可得出結果.【詳解】執行程序框;;;;;,滿足,退出循環,因此輸出,故選:B.【點睛】本題考查循環結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.3、A【解析】

根據正弦定理可得,求出,根據平方關系求出.由兩端平方,求的最大值,根據三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數量積運算,屬于中檔題.4、D【解析】

依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.【點睛】本題主要考查了復數的概念、復數的幾何意義,還考查了推理論證能力,屬于基礎題.5、A【解析】

先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數的最小值為3.【點睛】本題考查了數列的通項及求和問題,考查了數列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.6、C【解析】

由題意,模擬程序的運行,依次寫出每次循環得到的,的值,當時,不滿足條件,跳出循環,輸出的值.【詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環,輸出的值為其中①②①—②得.故選:.【點睛】本題主要考查了循環結構的程序框圖的應用,正確依次寫出每次循環得到,的值是解題的關鍵,屬于基礎題.7、D【解析】

根據三視圖即可求得幾何體表面積,即可解得未知數.【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.8、C【解析】

先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.9、D【解析】

由對數運算法則和等比數列的性質計算.【詳解】由題意.故選:D.【點睛】本題考查等比數列的性質,考查對數的運算法則.掌握等比數列的性質是解題關鍵.10、C【解析】

根據并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.11、D【解析】

根據三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.12、C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數為:.故答案為:.【點睛】本題考查了二項式定理的應用,意在考查學生的計算能力和應用能力.14、【解析】

利用復數的概念與復數的除法運算計算即可得到答案.【詳解】,所以復數的實部為2.故答案為:2【點睛】本題考查復數的除法運算,考查學生的基本計算能力,是一道基礎題.15、【解析】

寫出展開式的通項公式,考慮當的指數為零時,對應的值即為常數項.【詳解】的展開式通項公式為:,令,所以,所以常數項為.

故答案為:.【點睛】本題考查二項展開式中指定項系數的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數項對應的取值.16、【解析】

先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:【點睛】考查雙曲線的離心率的求法,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)將轉化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調遞減,在上單調遞增,進而可得,即,即可證出.【詳解】函數的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調遞增,在上單調遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調遞減,在上單調遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調遞增;又,,所以,使得,當時,;當時,,即在上單調遞減,在上單調遞增,且所以,即,所以,即.【點睛】本題主要考查利用導數法求函數的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數的單調性的考查,同時考查轉化與化歸的思想,屬于中檔題.18、(1)證明見解析;(2)1【解析】

(1)由菱形的性質和線面垂直的性質,可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.19、(1);(2).【解析】

(1)由可得出,兩式作差可求得數列的通項公式;(2)求得,利用數列的單調性的定義判斷數列的單調性,由此可求得數列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數列的通項公式為;(2)由(1)得,則.當時,,即,;當時,,即,.所以,數列的最小項為.【點睛】本題考查利用與的關系求通項,同時也考查了利用數列的單調性求數列中的最小項,考查推理能力與計算能力,屬于中等題.20、(1)見解析;(2).【解析】

(1)根據菱形的特征和題中條件得到平面,結合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在中,由得,以為原點,分別以為軸建立空間直角坐標系.則所以設平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉化為求二面角的正弦值,求出后,在中,過點作的垂線,垂足為,連接,則就是所求二面角平面角的補角,先求出,再求出,最后在中求出.)【點睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.21、(1);(2)【解析】

(1)由已知條件和正弦定理進行邊角互化得,再根據余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎題.22、(1);(2)極小值為,遞減區間為:,遞增區間為.【解析】

(1)由題意得到關于實數的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論