




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則()A. B. C.1 D.22.已知,,則()A. B. C.3 D.43.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件4.已知復數是純虛數,其中是實數,則等于()A. B. C. D.5.下列不等式正確的是()A. B.C. D.6.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環所占面積與單獨五個環面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統計落入五環內部及其邊界上的點數為n個,已知圓環半徑為1,則比值P的近似值為()A. B. C. D.7.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.8.已知函數,若不等式對任意的恒成立,則實數k的取值范圍是()A. B. C. D.9.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.10.已知數列的前項和為,且,,,則的通項公式()A. B. C. D.11.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.12.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域是____________.(寫成區間的形式)14.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.15.對任意正整數,函數,若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.16.二項式的展開式中項的系數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-5:不等式選講]設函數.(1)求不等式的解集;(2)已知關于的不等式在上有解,求實數的取值范圍.18.(12分)的內角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.19.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.20.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.21.(12分)設函數.(1)求不等式的解集;(2)若的最小值為,且,求的最小值.22.(10分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.2、A【解析】
根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.3、A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.4、A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.5、D【解析】
根據,利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數的圖象與性質,以及對數的比較大小問題,其中解答熟記三角函數與對數函數的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、B【解析】
根據比例關系求得會旗中五環所占面積,再計算比值.【詳解】設會旗中五環所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.7、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.8、A【解析】
先求出函數在處的切線方程,在同一直角坐標系內畫出函數和的圖象,利用數形結合進行求解即可.【詳解】當時,,所以函數在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內畫出函數和的圖象如下圖的所示:利用數形結合思想可知:不等式對任意的恒成立,則實數k的取值范圍是.故選:A【點睛】本題考查了利用數形結合思想解決不等式恒成立問題,考查了導數的應用,屬于中檔題.9、B【解析】
根據焦距即可求得參數,再根據點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.10、C【解析】
利用證得數列為常數列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數列,所以,故.故選:C【點睛】本小題考查數列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.11、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.12、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
要使函數有意義,需滿足,即,解得,故函數的定義域是.14、【解析】
取的中點為M,由可得,可得M在上,當最小時,弦的長才最大.【詳解】設為的中點,,即,即,,.設,則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關系的綜合應用,考查學生的邏輯推理、數形結合的思想,是一道有一定難度的題.15、【解析】
將代入求解即可;當為奇數時,,則轉化為,設,由單調性求得的最小值;同理,當為偶數時,,則轉化為,設,利用導函數求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數時,,由,得,而函數為單調遞增函數,所以,所以;當為偶數時,,由,得,設,,單調遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導函數求最值,考查分類討論思想和轉化思想.16、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)零點分段去絕對值解不等式即可(2)由題在上有解,去絕對值分離變量a即可.【詳解】(1)不等式,即等價于或或解得,所以原不等式的解集為;(2)當時,不等式,即,所以在上有解即在上有解,所以,.【點睛】本題考查絕對值不等式解法,不等式有解求參數,熟記零點分段,熟練處理不等式有解問題是關鍵,是中檔題.18、(1)(2)【解析】
(1)根據三角形面積公式和正弦定理可得答案;(2)根據兩角余弦公式可得,即可求出,再根據正弦定理可得,根據余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關系).【點睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導公式,考查正弦定理,余弦定理在解三角形中的綜合應用,考查了學生的運算能力,考查了轉化思想,屬于中檔題.19、(1)證明見解析(2)45°【解析】
(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設的中點為,連接.設的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標系,設.則,,,,顯然平面的法向量,設平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通常可采用幾何方法和向量方法兩種進行求解.20、(Ⅰ)函數的單調增區間為,單調減區間為;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區間為,單調減區間為;(Ⅱ)利用導數可得在區間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區間為,單調減區間為;(Ⅱ),則令,則(1),,所以在區間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數,當時,(a),(a)為減函數,所以(a)的最大值為,則的最大值為.【點睛】本題考查利用導數研究函數的單調性和最值,以及函數不等式恒成立問題的解法,意在考查學生等價轉化思想和數學運算能力,屬于較難題.21、(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據函數圖像知:當時,,所以.因為,由,可知,所以,當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物質能源在熱泵技術中的應用探索考核試卷
- 管道工程行業熱點問題研究與追蹤分析考核試卷
- 電池制造過程中的生產計劃與調度考核試卷
- 科技創新與趨勢分析洞悉未來把握機遇考核試卷
- 箱包行業創新商業模式考核試卷
- 森林經營與管護的森林采伐與林業產業考核試卷
- 汽車金融公司風險預警與應對策略考核試卷
- 電池制造中的精益生產與持續改進考核試卷
- 陽泉市2025屆三下數學期末調研模擬試題含解析
- 沈陽建筑大學《生物合成實驗》2023-2024學年第二學期期末試卷
- 導數大題題型分類
- 【計量指南】中國森林生態系統碳儲量-生物量方程
- 2024年上海奉賢區招錄儲備人才筆試真題
- 《新能源材料與器件專業生產實習》課程教學大綱
- 《copd疾病知識》課件
- 北京市東城區2024-2025學年高三(上)期末思想政治試卷(含答案)
- 2025河南中煙許昌卷煙廠招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年河南輕工職業學院高職單招語文歷年參考題庫含答案解析
- 即時通訊系統建設方案
- 動車乘務實務知到智慧樹章節測試課后答案2024年秋陜西交通職業技術學院
- 胎盤植入課件講義版
評論
0/150
提交評論