




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
小學奧數知識點匯總
1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理經過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內錯角相等,兩直線平行
11同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內錯角相等
14兩直線平行,同旁內角互補
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內角和定理三角形三個內角的和等于180°
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20推論3三角形的一個外角大于任何一個和它不相鄰的內角
21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全
等
23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全
等
24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角
三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對
等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個角都等于60。
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩
個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60。的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等
于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平
分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42定理1關于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線
的垂直平分線
44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線
相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么
這兩個圖形關于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平
方,即屋2+-2=>2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關系
a~2+b"2=c^2,那么這個三角形是直角三角形
48定理四邊形的內角和等于360°
49四邊形的外角和等于360°
50多邊形內角和定理n邊形的內角的和等于(n-2)X180°
51推論任意多邊的外角和等于360°
52平行四邊形性質定理1平行四邊形的對角相等
53平行四邊形性質定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1矩形的四個角都是直角
61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分
一組對角
66菱形面積=對角線乘積的一半,即$=(aXb)4-2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,
每條對角線平分一組對角
71定理1關于中心對稱的兩個圖形是全等的
72定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,
并且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一
點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段
相等,那么在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它
的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的
一半L=(a+b)4-2S=LXh
83(1)比例的基本性質如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質如果a/b=c/d=*f=m/n(b+d+…+nW0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應
線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),
所得的對應線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對
應線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三
角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相
交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平
分線的比都等于相似比
97性質定理2相似三角形周長的比等于相似比
98性質定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等
于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內部可以看作是圓心的距離小于半徑的點的集合
103圓的外部可以看作是圓心的距離大于半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對
的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一
條弧
H2推論2圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
H7推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓
周角所對的弧也相等
H8推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角
形是直角三角形
120定理圓的內接四邊形的對角互補,并且任何一個外角都等于它
的內對角
121①直線L和。0相交d<r
②直線L和。0相切d=r
③直線L和。。相離d>r
122切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是
圓的切線
123切線的性質定理圓的切線垂直于經過切點的半徑
124推論1經過圓心且垂直于切線的直線必經過切點
125推論2經過切點且垂直于切線的直線必經過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交
點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上
135①兩圓外離d>R+r②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)
④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦
137定理把圓分成n(ne3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個
圓的外切正n邊形
138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是
同心圓
139正n邊形的每個內角都等于(n-2)X180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角
三角形
141正n邊形的面積Sn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 半導體高純石墨原材料
- 公司年會員工獲獎感言集錦15篇
- 氣管吻合口瘺護理
- 生產計劃調度員年終總結
- 濰坊學院《西洋管弦樂合奏Ⅴ》2023-2024學年第二學期期末試卷
- 2025年山東省寧津縣市級名校初三下學期1月月考化學試題含解析
- 云南省大理州祥云縣重點達標名校2024-2025學年初三下學期2月教學質量檢測試題物理試題含解析
- 上海城建職業學院《中華才藝專題一》2023-2024學年第一學期期末試卷
- 山東工商學院《電力電子技術(實驗)》2023-2024學年第二學期期末試卷
- 宜春幼兒師范高等專科學校《人體結構學組培》2023-2024學年第二學期期末試卷
- 《全國民用建筑工程設計技術措施-電氣》
- 足療店應急處理預案方案
- 人教版五年級下冊數學期末質量檢測試卷含答案
- Unit 2 Understanding ideas The Well that changed the world 說課課件-2022-2023學年高中英語外研版(2019)必修第三冊
- 人教版五年級上冊數學-解方程計算題
- DB63-T 2160-2023 公路建設環境保護和水土保持綜合服務規范
- 2022版數學課程標準解讀
- 國家公務員考試準考證模板
- 一般現在時的特殊疑問句
- 第六講 以新發展理念引領高質量發展PPT習概論2023優化版教學課件
- 貴州交通運輸廳所屬事業單位考試真題2022
評論
0/150
提交評論