




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年陜西省西藏民族大學(xué)附屬中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.2.在四邊形中,如果,,那么四邊形的形狀是()A.矩形 B.正方形 C.菱形 D.直角梯形3.書架上有2本數(shù)學(xué)書和2本語文書,從這4本書中任取2本,那么互斥但不對立的兩個事件是()A.“至少有1本數(shù)學(xué)書”和“都是語文書”B.“至少有1本數(shù)學(xué)書”和“至多有1本語文書”C.“恰有1本數(shù)學(xué)書”和“恰有2本數(shù)學(xué)書”D.“至多有1本數(shù)學(xué)書”和“都是語文書”4.已知數(shù)列滿足是數(shù)列的前項和,則()A. B. C. D.5.矩形中,,若在該矩形內(nèi)隨機投一點,那么使得的面積不大于3的概率是()A. B. C. D.6.用數(shù)學(xué)歸納法證明這一不等式時,應(yīng)注意必須為()A. B., C., D.,7.已知是所在平面內(nèi)一點,且滿足,則為A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形8.空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)是()A. B.C. D.9.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.10.在中,分別為角的對邊,若的面積為,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的圖像與直線有且僅有四個不同的交點,則的取值范圍是______12.已知,是平面內(nèi)兩個互相垂直的單位向量,若向量滿足,則的最大值是.13.已知,,,是球的球面上的四點,,,兩兩垂直,,且三棱錐的體積為,則球的表面積為______.14.在等差數(shù)列中,公差不為零,且、、恰好為某等比數(shù)列的前三項,那么該等比數(shù)列公比的值等于____________.15.過點直線與軸的正半軸,軸的正半軸分別交于、兩點,為坐標(biāo)原點,當(dāng)最小時,直線的一般方程為______.16.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.18.已知數(shù)列滿足且,設(shè),.(1)求;(2)求的通項公式;(3)求.19.已知圓內(nèi)有一點,過點作直線交圓于兩點.(1)當(dāng)直線經(jīng)過圓心時,求直線的方程;(2)當(dāng)弦被點平分時,寫出直線的方程.20.如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點是的中點.(1)求證:;(2)求證:(3)求三棱錐的體積.21.已知正項數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.(1)求數(shù)列的通項公式;(2)若數(shù)列,求數(shù)列的前項和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由三視圖判斷該幾何體是有三條棱兩兩垂直是三棱錐,結(jié)合三視圖的數(shù)據(jù)可得結(jié)果.【詳解】由三視圖可得該幾何體是如圖所示的三棱錐,其中AB,BC,BP兩兩垂直,且,則和的面積都是1,的面積為2,在中,,則的面積為,所以該幾何體的表面積為,故選:B.【點睛】三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.2、C【解析】試題分析:因為,所以,即四邊形的對角線互相垂直,排除選項AD;又因為,所以四邊形對邊平行且相等,即四邊形為平行四邊形,但不能確定鄰邊垂直,所以只能確定為菱形.考點:1.向量相等的定義;2.向量的垂直;3、C【解析】
兩個事件互斥但不對立指的是這兩個事件不能同時發(fā)生,也可以都不發(fā)生,逐一判斷即可【詳解】對于A:“至少有1本數(shù)學(xué)書”和“都是語文書”是對立事件,故不滿足題意對于B:“至少有1本數(shù)學(xué)書”和“至多有1本語文書”可以同時發(fā)生,故不滿足題意對于C:“恰有1本數(shù)學(xué)書”和“恰有2本數(shù)學(xué)書”互斥但不對立,滿足題意對于D:“至多有1本數(shù)學(xué)書”和“都是語文書”可以同時發(fā)生,故不滿足題意故選:C【點睛】本題考查互斥而不對立的兩個事件的判斷,考查互斥事件、對立事件的定義等基礎(chǔ)知識,是基礎(chǔ)題.4、D【解析】
由已知遞推關(guān)系式可以推出數(shù)列的特征,即數(shù)列和均是等比數(shù)列,利用等比數(shù)列性質(zhì)求解即可.【詳解】解:由已知可得,當(dāng)時,由得,所以數(shù)列和均是公比為2的等比數(shù)列,首項分別為2和1,由等比數(shù)列知識可求得,,故選:D.【點睛】本題主要考查遞推關(guān)系式,及等比數(shù)列的相關(guān)知識,屬于中檔題.5、C【解析】
先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【詳解】設(shè)到的距離為,,則,如圖,設(shè),則點在矩形內(nèi),,,∴所求概率為.故選C.【點睛】本題考查幾何概型概率.解題關(guān)鍵是確定符合條件點所在區(qū)域及其面積.6、D【解析】
根據(jù)題意驗證,,時,不等式不成立,當(dāng)時,不等式成立,即可得出答案.【詳解】解:當(dāng),,時,顯然不等式不成立,當(dāng)時,不等式成立,故用數(shù)學(xué)歸納法證明這一不等式時,應(yīng)注意必須為,故選:.【點睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,屬于基礎(chǔ)題.7、B【解析】
由向量的減法法則,將題中等式化簡得,進(jìn)而得到,由此可得以為鄰邊的平行四邊形為矩形,得的形狀是直角三角形。【詳解】因為,,因為,所以,因為,所以,由此可得以為鄰邊的平行四邊形為矩形,所以,得的形狀是直角三角形。【點睛】本題給出向量等式,判斷三角形的形狀,著重考查平面向量的加法、減法法則和三角形的形狀判斷等知識。8、A【解析】
關(guān)于軸對稱,縱坐標(biāo)不變,橫坐標(biāo)、豎坐標(biāo)變?yōu)橄喾磾?shù).【詳解】關(guān)于軸對稱的兩點的縱坐標(biāo)相同,橫坐標(biāo)、豎坐標(biāo)均互為相反數(shù).所以點關(guān)于軸對稱的點的坐標(biāo)是.故選:A.【點睛】本題考查空間平面直角坐標(biāo)系,考查關(guān)于坐標(biāo)軸、坐標(biāo)平面對稱的問題.屬于基礎(chǔ)題.9、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選10、B【解析】試題分析:由已知條件及三角形面積計算公式得由余弦定理得考點:考查三角形面積計算公式及余弦定理.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將函數(shù)寫成分段函數(shù)的形式,再畫出函數(shù)的圖象,則直線與函數(shù)圖象有四個交點,從而得到的取值范圍.【詳解】因為因為所以,所以圖象關(guān)于對稱,其圖象如圖所示:因為直線與函數(shù)圖象有四個交點,所以.故答案為:.【點睛】本題考查利用三角函數(shù)圖象研究與直線交點個數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,作圖時發(fā)現(xiàn)圖象關(guān)于對稱,是快速畫出圖象的關(guān)鍵.12、【解析】
,,是平面內(nèi)兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內(nèi)兩個相互垂直的單位向量∴,即,所以當(dāng)時,即與共線時,取得最大值為,故答案為.13、【解析】
根據(jù)三棱錐的體積可求三棱錐的側(cè)棱長,補體后可求三棱錐外接球的直徑,從而可計算外接球的表面積.【詳解】三棱錐的體積為,故,因為,,兩兩垂直,,故可把三棱錐補成正方體,該正方體的體對角線為三棱錐外接球的直徑,又體對角線的長度為,故球的表面積為.填.【點睛】幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中.如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.14、4【解析】
由題意將表示為的方程組求解得,即可得等比數(shù)列的前三項分別為﹑、,則公比可求【詳解】由題意可知,,又因為,,代入上式可得,所以該等比數(shù)列的前三項分別為﹑、,所以.故答案為:4【點睛】本題考查等差等比數(shù)列的基本量計算,考查計算能力,是基礎(chǔ)題15、【解析】
設(shè)直線的截距式方程為,利用該直線過可得,再利用基本不等式可求何時即取最小值,從而得到相應(yīng)的直線方程.【詳解】設(shè)直線的截距式方程為,其中且.因為直線過,故.所以,由基本不等式可知,當(dāng)且僅當(dāng)時等號成立,故當(dāng)取最小值時,直線方程為:.填.【點睛】直線方程有五種形式,常用的形式有點斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式,特別地,如果考慮的問題是與直線、坐標(biāo)軸圍成的直角三角形有關(guān)的問題,可考慮利用截距式.16、2【解析】
由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由題意求得所在直線的斜率再由直線方程點斜式求的方程,然后利用點到直線的距離公式求解;(2)設(shè)的坐標(biāo),由題意列式求得的坐標(biāo),再求出,代入三角形面積公式求解.【詳解】(1)由題意,,直線的方程為,即.點到直線的距離;(2)設(shè),則的中點坐標(biāo)為,則,解得,即,.的面積.【點睛】本題考查點到直線的距離公式的應(yīng)用,考查點關(guān)于直線的對稱點的求法,是基礎(chǔ)題.18、(1),,,;(1),;(3).【解析】
(1)依次代入計算,可求得;(1)歸納出,并用數(shù)學(xué)歸納法證明;(3)用裂項相消法求和,然后求極限.【詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學(xué)歸納法證明:1°n=1,n=1時,由(1)知成立,1°假設(shè)n=k(k>1)時,結(jié)論成立,即bk=1k1,則n=k+1時,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時結(jié)論成立,∴對所有正整數(shù)n,bn=1n1.(3)由(1)知n1時,,∴,.【點睛】本題考查用歸納法求數(shù)列的通項公式,考查用裂項相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項公式時,可以根據(jù)已知的遞推關(guān)系求出數(shù)列的前幾項,然后歸納出通項公式,并用數(shù)學(xué)歸納法證明,這對學(xué)生的歸納推理能力有一定的要求,這也就是我們平常所學(xué)的從特殊到一般的推理方法.19、(1)(2)【解析】
(1)求得圓的圓心為,利用直線的點斜式方程,即可求解;(2)當(dāng)弦被點平分時,,得此直線的斜率為,結(jié)合直線的點斜式方程,即可求解.【詳解】(1)由題意得,圓的圓心為,因為直線過點,所以直線的斜率為2,直線的方程為,即直線的方程.(2)當(dāng)弦被點平分時,,此時直線的斜率為,所以直線的方程為,即直線的方程.【點睛】本題主要考查了直線的方程的求解,以及圓的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用直線與圓的位置關(guān)系和直線的點斜式方程是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1)見解析;(2)見解析;(3)8.【解析】試題分析:(1)由勾股定理得,由面得到,從而得到面,故;(2)連接交于點,則為的中位線,得到∥,從而得到∥面;(3)過作垂足為,面,面積法求,求出三角形的面積,代入體積公式進(jìn)行運算.試題解析:(1)證明:在中,由勾股定理得為直角三角形,即.又面,,,面,.(2)證明:設(shè)交于點,則為的中點,連接,則為的中位線,則在中,∥,又面,則∥面.(3)在中過作垂足為,由面⊥面知,面,.而,,.考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積.21、(1);(2);(3).【解析】
(1)將點代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求出數(shù)列的前項和;(3)利用分組求和法與裂項法求出數(shù)列的前項和,由題意得出,判斷出數(shù)列各項的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實數(shù)的取值范圍.【詳解】(1)將點代入函數(shù)的解析式得到.當(dāng)時,,即,解得;當(dāng)時,由得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025冰箱購銷的合同范文
- 2025年上海市崇明區(qū)中考二模英語試題(含答案)
- 2025年512全國防災(zāi)減災(zāi)日知識競賽題庫與答案
- 鹽酸項目運營管理手冊(模板)
- 藍(lán)色簡約風(fēng)影視作品傲慢與偏見
- 項目管理資格證書考試試題及答案
- 電力安全知識課件安全帶
- DB36T-“幸福社區(qū)”服務(wù)質(zhì)量星級標(biāo)準(zhǔn)編制說明
- 電力安全生產(chǎn)黨課課件
- 植保員職業(yè)生涯的心理建設(shè)與發(fā)展試題及答案
- (二模)2025年深圳市高三年級第二次調(diào)研考試地理試卷(含標(biāo)準(zhǔn)答案)
- 學(xué)生心理健康一生一策檔案表
- 2025年陜西省公民科學(xué)素質(zhì)大賽考試題(附答案)
- 植物拓染非物質(zhì)文化遺產(chǎn)傳承拓花草之印染自然之美課件
- 馬克思主義與社會科學(xué)方法論(研究生政治課程)復(fù)習(xí)重點
- 機電一體化專業(yè)畢業(yè)論文43973
- 基于PLC的變頻中央空調(diào)溫度控制系統(tǒng)的畢業(yè)設(shè)計
- 門禁系統(tǒng)調(diào)試報告(共4頁)
- 北師大版一年級英語下冊期中測試卷
- 檔案學(xué)概論重點知識梳理
- 地下連續(xù)墻鋼筋籠起重吊裝專項施工方案
評論
0/150
提交評論