甘肅省隴南市徽縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末檢測模擬試題含解析_第1頁
甘肅省隴南市徽縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末檢測模擬試題含解析_第2頁
甘肅省隴南市徽縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末檢測模擬試題含解析_第3頁
甘肅省隴南市徽縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末檢測模擬試題含解析_第4頁
甘肅省隴南市徽縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省隴南市徽縣第三中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式的解集為()A. B. C. D.2.在一次隨機試驗中,彼此互斥的事件A,B,C,D的概率分別是0.1,0.2,0.3,0.4,則下列說法正確的是A.A+B與C是互斥事件,也是對立事件 B.B+C與D不是互斥事件,但是對立事件C.A+C與B+D是互斥事件,但不是對立事件 D.B+C+D與A是互斥事件,也是對立事件3.如圖是函數(shù)的部分圖象,則下列命題中,正確的命題序號是①函數(shù)的最小正周期為②函數(shù)的振幅為③函數(shù)的一條對稱軸方程為④函數(shù)的單調(diào)遞增區(qū)間是⑤函數(shù)的解析式為A.③⑤ B.③④ C.④⑤ D.①③4.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.105.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值等于()A.1 B.5 C.9 D.46.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或37.函數(shù)的零點所在的一個區(qū)間是().A. B. C. D.8.已知平面平面,直線,直線,則直線,的位置關(guān)系為()A.平行或相交 B.相交或異面 C.平行或異面 D.平行?相交或異面9.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)事件為“三件產(chǎn)品全不是次品”,事件為“三件產(chǎn)品全是次品”,事件為“三件產(chǎn)品不全是次品”,則下列結(jié)論正確的是()A.事件與互斥 B.事件與互斥C.任何兩個事件均互斥 D.任何兩個事件均不互斥10.已知數(shù)列的前n項和為,且滿足,則()A.1 B. C. D.2016二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則____________.12.不等式的解集為______.13.設(shè)滿足約束條件若目標(biāo)函數(shù)的最大值為,則的最小值為_________.14.在中,角A,B,C所對的邊分別為a,b,c,若的面積為,則的最大值為________.15.若不等式的解集為空集,則實數(shù)的能為___________.16.函數(shù)的最小正周期為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在海上進行工程建設(shè)時,一般需要在工地某處設(shè)置警戒水域;現(xiàn)有一海上作業(yè)工地記為點,在一個特定時段內(nèi),以點為中心的1海里以內(nèi)海域被設(shè)為警戒水域,點正北海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東且與點相距10海里的位置,經(jīng)過12分鐘又測得該船已行駛到點北偏東且與點相距海里的位置.(1)求該船的行駛速度(單位:海里/小時);(2)若該船不改變航行方向繼續(xù)行駛.試判斷它是否會進入警戒水域(點與船的距離小于1海里即為進入警戒水域),并說明理由.18.如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為,,為橢圓上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設(shè).(1)若點的坐標(biāo)為,求橢圓的方程及的值;(2)若,求橢圓的離心率的取值范圍.19.已知數(shù)列的前項和,滿足.(1)若,求數(shù)列的通項公式;(2)在滿足(1)的條件下,求數(shù)列的前項和的表達式;20.在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,且,.(1)求數(shù)列和的通項公式;(2)令,設(shè)數(shù)列的前項和為,求()的最大值與最小值.21.在等差數(shù)列中,已知.(1)求通項;(2)求的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

可將分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.【詳解】原不等式可化為,其解集為,故選B.【點睛】一般地,等價于,而則等價于,注意分式不等式轉(zhuǎn)化為整式不等式時分母不為零.2、D【解析】

不可能同時發(fā)生的事件為互斥事件,當(dāng)兩個互斥事件的概率和為1,則兩個事件為對立事件,易得答案.【詳解】因為事件彼此互斥,所以與是互斥事件,因為,,,所以與是對立事件,故選D.【點睛】本題考查互斥事件、對立事件的概念,注意對立事件一定是互斥事件,而互斥事件不一定是對立事件.3、A【解析】

根據(jù)圖象求出函數(shù)解析式,根據(jù)三角函數(shù)型函數(shù)的性質(zhì)逐一判定.【詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數(shù)的單調(diào)遞增區(qū)間是,故錯;故選:A【點睛】本題主要考查了根據(jù)圖象求正弦型函數(shù)函數(shù)的解析式,及正弦型函數(shù)的性質(zhì),屬于中檔題.4、B【解析】試題分析:把圓的方程化為標(biāo)準(zhǔn)方程得,所以圓心坐標(biāo)為半徑,因為直線始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點與點的距離的平方,因為到直線的距離,所以的最小值為,故選B.考點:1、圓的方程及幾何性質(zhì);2、點到直線的距離公式及最值問題的應(yīng)用.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、點到直線的距離公式及最值問題的應(yīng)用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點到直線的距離解答的.5、C【解析】試題分析:由韋達定理得,,則,當(dāng)適當(dāng)排序后成等比數(shù)列時,必為等比中項,故,.當(dāng)適當(dāng)排序后成等差數(shù)列時,必不是等差中項,當(dāng)是等差中項時,,解得,;當(dāng)是等差中項時,,解得,,綜上所述,,所以.考點:等差中項和等比中項.6、D【解析】

根據(jù)直線的平行關(guān)系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗,當(dāng)或時,兩條直線均平行.故選:D【點睛】此題考查根據(jù)直線平行關(guān)系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.7、B【解析】

判斷函數(shù)的單調(diào)性,利用f(﹣1)與f(1)函數(shù)值的大小,通過零點存在性定理判斷即可【詳解】函數(shù)f(x)=2x+3x是增函數(shù),f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零點存在性定理可知:函數(shù)f(x)=2x+3x的零點所在的一個區(qū)間(﹣1,1).故選:B.【點睛】本題考查零點存在性定理的應(yīng)用,考查計算能力,注意函數(shù)的單調(diào)性的判斷.8、C【解析】

根據(jù)直線與直線的位置關(guān)系,結(jié)合題意,進行選擇.【詳解】因為平面平面,直線,直線,所以直線沒有公共點,所以兩條直線平行或異面.故選:C.【點睛】本題考查直線與直線的位置關(guān)系,屬基礎(chǔ)題.9、B【解析】

根據(jù)互斥事件的定義,逐個判斷,即可得出正確選項.【詳解】為三件產(chǎn)品全不是次品,指的是三件產(chǎn)品都是正品,為三件產(chǎn)品全是次品,為三件產(chǎn)品不全是次品,它包括一件次品,兩件次品,三件全是正品三個事件由此知:與是互斥事件;與是包含關(guān)系,不是互斥事件;與是互斥事件,故選B.【點睛】本題主要考查互斥事件定義的應(yīng)用.10、C【解析】

利用和關(guān)系得到數(shù)列通項公式,代入數(shù)據(jù)得到答案.【詳解】已知數(shù)列的前n項和為,且滿足,相減:取答案選C【點睛】本題考查了和關(guān)系,數(shù)列的通項公式,意在考查學(xué)生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由已知結(jié)合同角三角函數(shù)基本關(guān)系式可得,然后分子分母同時除以求解.【詳解】,.故答案為:.【點睛】本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)的計算題.12、【解析】

根據(jù)一元二次不等式的解法直接求解可得結(jié)果.【詳解】由得:即不等式的解集為故答案為:【點睛】本題考查一元二次不等式的求解問題,屬于基礎(chǔ)題.13、【解析】

試題分析:試題分析:由得,平移直線由圖象可知,當(dāng)過時目標(biāo)函數(shù)的最大值為,即,則,當(dāng)且僅當(dāng),即時,取等號,故的最小值為.考點:1、利用可行域求線性目標(biāo)函數(shù)的最值;2、利用基本不等式求最值.【方法點晴】本題主要考查可行域、含參數(shù)目標(biāo)函數(shù)最優(yōu)解和均值不等式求最值,屬于難題.含參變量的線性規(guī)劃問題是近年來高考命題的熱點,由于參數(shù)的引入,提高了思維的技巧、增加了解題的難度,此類問題的存在增加了探索問題的動態(tài)性和開放性,此類問題一般從目標(biāo)函數(shù)的結(jié)論入手,對目標(biāo)函數(shù)變化過程進行詳細分析,對變化過程中的相關(guān)量的準(zhǔn)確定位,是求最優(yōu)解的關(guān)鍵.14、【解析】

先求得的值,再利用兩角和差的三角公式和正弦函數(shù)的最大值,求得的最大值.【詳解】中,若的面積為,,.,當(dāng)且僅當(dāng)時,取等號,故的最大值為,故答案為:.【點睛】本題主要兩角和差的三角公式的應(yīng)用和正弦函數(shù)的最大值,屬于基礎(chǔ)題.15、【解析】

根據(jù)分式不等式,移項、通分并等價化簡,可得一元二次不等式.結(jié)合二次函數(shù)恒成立條件,即可求得的值.【詳解】將不等式化簡可得即的解集為空集所以對于任意都恒成立將不等式等價化為即恒成立由二次函數(shù)性質(zhì)可知化簡不等式可得解得故答案為:【點睛】本題考查了分式不等式的解法,將不等式等價化為一元二次不等式,結(jié)合二次函數(shù)性質(zhì)解決恒成立問題,屬于中檔題.16、【解析】

將三角函數(shù)進行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結(jié)果.【詳解】,.【點睛】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)海里/小時;(2)該船不改變航行方向則會進入警戒水域,理由見解析.【解析】

(1)建立直角坐標(biāo)系,首先求出位置與位置的距離,然后除以經(jīng)過的時間即可求出船的航行速度;(2)求出位置與位置所在直線方程,求出位置與直線的距離與1海里對比即可.【詳解】(1)如圖建立平面直角坐標(biāo)系:設(shè)一個單位長度為1海里,則坐標(biāo)中,,,,再由方位角可求得:,,所以,又因為12分鐘=0.2小時,則(海里/小時),所以該船行駛的速度為海里/小時;(2)直線的斜率為,所以直線的方程為:,即,所以點到直線的距離為,即該船不改變航行方向行駛時離點的距離小于1海里,所以若該船不改變航行方向則會進入警戒水域.【點睛】本題主要考查了直角坐標(biāo)系中兩點間距離的計算,直線與圓的位置關(guān)系,屬于一般題.18、(1);(2)【解析】

(1)把的坐標(biāo)代入方程得到,結(jié)合解出后可得標(biāo)準(zhǔn)方程.求出直線的方程,聯(lián)立橢圓方程和直線方程后可求的坐標(biāo),故可得的值.(2)因,故可用表示的坐標(biāo),利用它在橢圓上可得與的關(guān)系,化簡后可得與離心率的關(guān)系,由的范圍可得的范圍.【詳解】(1)因為垂直于軸,且點的坐標(biāo)為,所以,,解得,,所以橢圓的方程為.所以,直線的方程為,將代入橢圓的方程,解得,所以.(2)因為軸,不妨設(shè)在軸上方,,.設(shè),因為在橢圓上,所以,解得,即.(方法一)因為,由得,,,解得,,所以.因為點在橢圓上,所以,即,所以,從而.因為,所以.解得,所以橢圓的離心率的取值范圍.【點睛】求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.圓錐曲線中的離心率的計算或范圍問題,關(guān)鍵是利用題設(shè)條件構(gòu)建關(guān)于的一個等式關(guān)系或不等式關(guān)系,其中不等式關(guān)系的構(gòu)建需要利用題設(shè)中的范圍、坐標(biāo)的范圍、幾何量的范圍或點的位置等.19、(1);(2).【解析】

(1)已知求,利用即可求出;(2)根據(jù)數(shù)列通項公式特征,采取分組求和法和錯位相減法求出【詳解】(1)因為,所以,當(dāng)時,,所以;當(dāng)時,,即,,因為,所以,,即,當(dāng)時,也符合公式.綜上,數(shù)列的通項公式為.(2)因為,所以()由得,兩式作差得,,即,故.【點睛】本題主要考查求數(shù)列通項的方法——公式法和構(gòu)造法的應(yīng)用,以及數(shù)列的求和方法——分組求和法和錯位相減法的應(yīng)用.20、(1),;(2)的最大值是,最小值是.【解析】試題分析:(1)由條件列關(guān)于公差與公比的方程組,解得,,再根據(jù)等差與等比數(shù)列通項公式求通項公式(2)化簡可得,再根據(jù)等比數(shù)列求和公式得,結(jié)合函數(shù)單調(diào)性,可確定其最值試題解析:(1)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論