




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣西柳州市高級中學高一下數學期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,且,則()A. B. C. D.2.《趣味數學·屠夫列傳》中有如下問題:“戴氏善屠,日益功倍。初日屠五兩,今三十日屠訖,問共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?”()A. B. C. D.3.已知A(2,4)與B(3,3)關于直線l對稱,則直線l的方程為().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=04.若數列前12項的值各異,且對任意的都成立,則下列數列中可取遍前12項值的數列為()A. B. C. D.5.已知扇形的面積為,半徑為,則扇形的圓心角的弧度數為A. B. C. D.6.已知圓與圓有3條公切線,則()A. B.或 C. D.或7.設集合A={x|x≥–3},B={x|–3<x<1},則A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}8.過點A(3,3)且垂直于直線的直線方程為A. B. C. D.9.已知,,則等于()A. B. C. D.10.一個圓柱的側面展開圖是一個正方形,這個圓柱全面積與側面積的比為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知與的夾角為求=_____.12.已知,則的取值范圍是_______;13.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.14.和2的等差中項的值是______.15.直線和將單位圓分成長度相等的四段弧,則________.16.一組數據2,4,5,,7,9的眾數是2,則這組數據的中位數是_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.一汽車廠生產,,三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產量如下表(單位:輛):按類用分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有類轎車10輛.轎車轎車轎車舒適型100150標準型300450600(1)求的值;(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把這8輛轎車的得分看作一個總體,從中任取一個得分數,
記這8輛轎車的得分的平均數為,定義事件,且函數沒有零點,求事件發生的概率.18.在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;(3)設,是圓上任意兩點,點關于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.19.已知函數.(1)求的單調增區間;(2)求的圖像的對稱中心與對稱軸.20.已知函數.(1)解關于的不等式;(2)若關于的不等式的解集為,求實數的值.21.一個盒子中裝有4張卡片,每張卡片上寫有1個數字,數字分別是1、2、3、4,現從盒子中隨機抽取卡片.(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數字之和大于或等于7的概率;(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數字2的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用二倍角的正弦公式和與余弦公式化簡可得.【詳解】∵,∴,∵,所以,∴,∴.故選:A【點睛】本題考查了二倍角的正弦公式,考查了二倍角的余弦公式,屬于基礎題.2、D【解析】
根據題意,得到該屠戶每天屠的肉成等比數列,記首項為,公比為,前項和為,由題中熟記,以及等比數列的求和公式,即可得出結果.【詳解】由題意,該屠戶每天屠的肉成等比數列,記首項為,公比為,前項和為,所以,,因此.故選:D【點睛】本題主要考查等比數列的應用,熟記等比數列的求和公式即可,屬于基礎題型.3、C【解析】試題分析:兩點關于直線對稱,則,點與的中點在直線上,,那么直線的斜率等于,中點坐標為,即中點坐標為,,整理得:,故選C.考點:求直線方程4、C【解析】
根據題意可知利用除以12所得的余數分析即可.【詳解】由題知若要取遍前12項值的數列,則需要數列的下標能夠取得除以12后所有的余數.因為12的因數包括3,4,6,故不能除以12后取所有的余數.如除以12的余數只能取1,4,7,10的循環余數.又5不能整除12,故能夠取得除以12后取所有的余數.故選:C【點睛】本題主要考查了數列下標整除與余數的問題,屬于中等題型.5、A【解析】
設半徑為,圓心角為,根據扇形面積公式,結合題中數據,即可求出結果.【詳解】設半徑為,圓心角為,則對應扇形面積,又,,則故選A.【點睛】本題主要考查由扇形面積求圓心角的問題,熟記扇形面積公式即可,屬于常考題型.6、B【解析】
由兩圓有3條公切線,可知兩圓外切,則圓心距等于兩圓半徑之和,求解即可.【詳解】由題意,圓與圓外切,所以,即,解得或.【點睛】本題考查了兩圓外切的性質,考查了計算能力,屬于基礎題.7、C【解析】
根據并集的運算律可計算出集合A∪B.【詳解】∵A=xx≥-3,B=x故選:C.【點睛】本題考查集合的并集運算,解題的關鍵就是并集運算律的應用,考查計算能力,屬于基礎題.8、D【解析】過點A(3,3)且垂直于直線的直線斜率為,代入過的點得到.故答案為D.9、D【解析】
通過化簡可得,再根據,可得,利用同角三角函數可得,則答案可得.【詳解】解:,又,得,即,又,且,解得,,故選:D.【點睛】本題考查三角恒等變形的化簡和求值,是中檔題.10、A【解析】解:設圓柱底面積半徑為r,則高為2πr,全面積:側面積=[(2πr)2+2πr2]:(2πr)2這個圓柱全面積與側面積的比為,故選A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意可得:,結合向量的運算法則和向量模的計算公式可得的值.【詳解】由題意可得:,則:.【點睛】本題主要考查向量模的求解,向量的運算法則等知識,意在考查學生的轉化能力和計算求解能力.12、【解析】
本題首先可以根據向量的運算得出,然后等式兩邊同時平方并化簡,得出,最后根據即可得出的取值范圍.【詳解】設向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運算以及向量的數量積的相關性質,向量的數量積公式,考查計算能力,是簡單題.13、【解析】該幾何體是由兩個高為1的圓錐與一個高為2的圓柱組合而成,所以該幾何體的體積為.考點:本題主要考查三視圖及幾何體體積的計算.14、【解析】
根據等差中項性質求解即可【詳解】設等差中項為,則,解得故答案為:【點睛】本題考查等差中項的求解,屬于基礎題15、0【解析】
將單位圓分成長度相等的四段弧,每段弧對應的圓周角為,計算得到答案.【詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應的圓周角為或故答案為0【點睛】本題考查了直線和圓相交問題,判斷每段弧對應的圓周角為是解題的關鍵.16、【解析】
根據眾數的定義求出的值,再根據中位數的定義進行求解即可.【詳解】因為一組數據2,4,5,,7,9的眾數是2,所以,這一組數據從小到大排列為:2,2,4,5,7,9,因此這一組數據的中位數為:.故答案為:【點睛】本題考查了眾數和中位數的定義,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)400;(2);(3)【解析】
(1)由分層抽樣按比例可得;(2)把5個樣本編號,用列舉法列出任取2輛的所有基本事件,得出至少有1輛舒適型轎車的基本事件,計數后可得概率.(3)求出,確定事件所含的個數后可得概率.【詳解】(1)由題意,解得;(2)C類產品中舒適型和標準型產品數量比為,因此5人樣品中舒適型抽取了2輛,標準型抽取了3輛,編號為,任取2輛的基本事件有:共10個,其中至少有1輛舒適型轎車的基本事件有共7個,所求概率為.(3)由題意,滿足的有共6個,函數沒有零點,則,解得,再去掉,還有4個,∴所求概率為.【點睛】本題考查分層抽樣,考查古典概型,解題關鍵是用列舉法寫出所有的基本事件.18、(1);(2);(3)見解析【解析】
(1)利用點到直線距離公式,可以求出弦心距,根據垂徑定理結合勾股定理,可以求出圓的半徑,進而可以求出圓的方程;(2)設出直線的截距式方程,利用圓的切線性質,得到一個方程,結合已知,又得到一個方程,兩個方程聯立,解方程組,即可求出直線直線的方程;(3)設,,則,,,分別求出直線與軸交點坐標、直線與軸交點坐標,求出的表達式,通過計算可得.【詳解】(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時直線的方程為.(3)設,,則,,,直線與軸交點坐標為,,直線與軸交點坐標為,,,為定值2.【點睛】本題考查了圓的垂徑定理、圓的切線性質、勾股定理,考查了求直線方程,考查了數學運算能力.19、(1);(2)對稱中心,;對稱軸為【解析】
利用誘導公式可將函數化為;(1)令,求得的范圍即為所求單調增區間;(2)令,求得即為對稱中心橫坐標,進而得到對稱中心;令,求得即為對稱軸.【詳解】(1)令,,解得:,的單調遞增區間為(2)令,,解得:,的對稱中心為,令,,解得:,的對稱軸為【點睛】本題考查正弦型函數單調區間、對稱軸和對稱中心的求解,涉及到誘導公式化簡函數的問題;關鍵是能夠熟練掌握整體對應的方式,結合正弦函數的性質來求解單調區間、對稱軸和對稱中心.20、(1)①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)【解析】
(1)不等式,可化為,分三種情況討論,分別利用一元二次不等式的解法求解即可;(2)不等可化為,根據1和4是方程的兩根,利用韋達定理列方程求解即可.【詳解】(1)不等式,可化為:.①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)不等可化為:.由不等式的解集為可知,1和4是方程的兩根.故有,解得.由時方程為的根為1或4,則實數的值為1.【點睛】本題主要考查一元二次不等式的解法以及分類討論思想的應用,屬于中檔題..分類討論思想的常見類型
,⑴問題中的變量或含有需討論的參數的,要進行分類討論的;
⑵問題中的條件是分類給出的;
⑶解題過程不能統一敘述,必須分類討論的;
⑷涉及幾何問題時,由幾何元素的形狀、位置的變化需要分類討論的.21、(1)(2)【解析】
古典概型要求能夠列舉出所有事件和發生事件的個數,本題可以列舉出所有事件,概率問題同其他的知識點結合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(1)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數字全部可能的結果,可以列舉出,而滿足條件的事件數字之和大于7的,可以從列舉出的結果中看出.(2)列舉出每次抽1張,連續抽取兩張全部可能的基本結果,而滿足條件的事件是兩次抽取中至少一次抽到數字3,從前面列舉出的結果中找出來.解:(Ⅰ)設A表示事件“抽取3張卡片上的數字之和大于或等于7”,任取三張卡片,三張卡片上的數字全部可能的結果是(1、2、3),(1、2、4),(1、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 業務文員面試題目及答案
- 識別弱點備戰福建事業單位考試試題及答案
- 氣切護理及吸痰
- 動物科學專業課程
- 美容院護理知識培訓課件
- 急乳蛾中醫護理
- 2024年福建事業單位考試學習計劃試題及答案
- 物流管理運輸水果
- 建筑工程管理人員的合同范例
- 離婚財產分割協議的范文
- 統編版語文四年級下冊第六單元教材解讀解讀與集體備課課件
- 管網漏水控制系統流程圖
- 橋隧短距離相接道路T梁架設施工工法
- 運動訓練學-運動訓練方法與手段
- 2019外研社王嫣演講稿
- 展廳設計布展投標方案(完整技術標)
- 臨床路徑工作總結醫院臨床路徑管理工作總結
- 2023屆廣東省普通高中數學學業水平考試試卷及答案
- 幼升小上實機考題匯總
- 2023年版接觸網工考試內部模擬題庫含答案必考點
- 新疆維吾爾自治區初中學業水平考試英語答題卡
評論
0/150
提交評論