




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年江蘇省南京市六合區中考數學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.2.不等式2x﹣1<1的解集在數軸上表示正確的是()A. B.C. D.3.下列圖標中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.從1、2、3、4、5、6這六個數中隨機取出一個數,取出的數是3的倍數的概率是()A. B. C. D.5.如圖是某幾何體的三視圖及相關數據,則該幾何體的全面積是()A.15π B.24π C.20π D.10π6.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶57.在下列函數中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=8.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)9.若a=,則實數a在數軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H10.下列運算正確的是()A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=911.對于非零的兩個實數、,規定,若,則的值為()A. B. C. D.12.如圖分別是某班全體學生上學時乘車、步行、騎車人數的分布直方圖和扇形統計圖(兩圖都不完整),下列結論錯誤的是()A.該班總人數為50 B.步行人數為30C.乘車人數是騎車人數的2.5倍 D.騎車人數占20%二、填空題:(本大題共6個小題,每小題4分,共24分.)13.方程3x(x-1)=2(x-1)的根是14.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.15.如果正比例函數y=(k-2)x的函數值y隨x的增大而減小,且它的圖象與反比例函數y=的圖象沒有公共點,那么k的取值范圍是______.16.尺規作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.17.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.18.在平面直角坐標系xOy中,位于第一象限內的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,∠AOB=90°,反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數y=(k>0,x>0)的圖象過點B,且AB∥x軸.(1)求a和k的值;(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求△OBC的面積.20.(6分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.21.(6分)先化簡,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.22.(8分)如圖,已知AB是圓O的直徑,F是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.23.(8分)九(3)班“2017年新年聯歡會”中,有一個摸獎游戲,規則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.(1)現小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,求小芳獲獎的概率.(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現一張笑臉就獲獎.他們獲獎的機會相等嗎?通過樹狀圖分析說明理由.24.(10分)某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.若該商品連續兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;經調查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?25.(10分)為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數:.李明在開始創業的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規定,這種節能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?26.(12分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點M在對稱軸右側的拋物線上,點N在x軸上,請問是否存在以點A,F,M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.27.(12分)研究發現,拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發現,對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯距離;當時,稱點M為拋物線的關聯點.(1)在點,,,中,拋物線的關聯點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯點,則t的取值范圍是________.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
利用平行線的判定方法判斷即可得到結果.【詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【點睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.2、D【解析】
先求出不等式的解集,再在數軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數化為1得,x<1.在數軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.3、D【解析】試題分析:根據軸對稱圖形和中心對稱圖形的概念,可知:A既不是軸對稱圖形,也不是中心對稱圖形,故不正確;B不是軸對稱圖形,但是中心對稱圖形,故不正確;C是軸對稱圖形,但不是中心對稱圖形,故不正確;D即是軸對稱圖形,也是中心對稱圖形,故正確.故選D.考點:軸對稱圖形和中心對稱圖形識別4、B【解析】考點:概率公式.專題:計算題.分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.解答:解:從1、2、3、4、5、6這六個數中隨機取出一個數,共有6種情況,取出的數是3的倍數的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)="m"/n.5、B【解析】解:根據三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.6、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據角平分線的性質得到OD=OE=OF,根據三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故選C.【點睛】考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.7、D【解析】
依據一次函數的圖象,二次函數的圖象以及反比例函數的圖象進行判斷即可.【詳解】A.正比例函數y=2x與x軸交于(0,0),不合題意;B.一次函數y=-3x+1與x軸交于(,0),不合題意;C.二次函數y=x2與x軸交于(0,0),不合題意;D.反比例函數y=與x軸沒有交點,符合題意;故選D.8、A【解析】
首先根據各選項棋子的位置,進而結合軸對稱圖形和中心對稱圖形的性質判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質,利用已知確定各點位置是解題關鍵.9、C【解析】
根據被開方數越大算術平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數與數軸,利用被開方數越大算術平方根越大得出3<<4是解題關鍵.10、D【解析】
直接利用合并同類項法則以及二次根式的性質、二次根式乘法、零指數冪的性質分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質、二次根式乘法、零指數冪的性質,正確把握相關性質是解題關鍵.11、D【解析】試題分析:因為規定,所以,所以x=,經檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.12、B【解析】
根據乘車人數是25人,而乘車人數所占的比例是50%,即可求得總人數,然后根據百分比的含義即可求得步行的人數,以及騎車人數所占的比例.【詳解】A、總人數是:25÷50%=50(人),故A正確;B、步行的人數是:50×30%=15(人),故B錯誤;C、乘車人數是騎車人數倍數是:50%÷20%=2.5,故C正確;D、騎車人數所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.14、【解析】
連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點睛】本題考查了扇形的面積計算以及全等三角形的判定與性質等知識,根據已知得出四邊形GBHD的面積等于△ABD的面積是解題關鍵.15、【解析】
先根據正比例函數y=(k-1)x的函數值y隨x的增大而減小,可知k-1<0;再根據它的圖象與反比例函數y=的圖象沒有公共點,說明反比例函數y=的圖象經過一、三象限,k>0,從而可以求出k的取值范圍.【詳解】∵y=(k-1)x的函數值y隨x的增大而減小,
∴k-1<0
∴k<1
而y=(k-1)x的圖象與反比例函數y=的圖象沒有公共點,
∴k>0
綜合以上可知:0<k<1.
故答案為0<k<1.【點睛】本題考查的是一次函數與反比例函數的相關性質,清楚掌握函數中的k的意義是解決本題的關鍵.16、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】
利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【點睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.17、-4【解析】:由反比例函數解析式可知:系數,∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-418、.【解析】
依據點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規律.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)a=2,k=8(2)=1.【解析】分析:(1)把A(-1,a)代入反比例函數得到A(-1,2),過A作AE⊥x軸于E,BF⊥x軸于F,根據相似三角形的性質得到B(4,2),于是得到k=4×2=8;
(2)求的直線AO的解析式為y=-2x,設直線MN的解析式為y=-2x+b,得到直線MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結論.詳解:(1)∵反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),過A作AE⊥x軸于E,BF⊥⊥x軸于F,∴AE=2,OE=1,∵AB∥x軸,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直線OA過A(﹣1,2),∴直線AO的解析式為y=﹣2x,∵MN∥OA,∴設直線MN的解析式為y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直線MN的解析式為y=﹣2x+10,∵直線MN交x軸于點M,交y軸于點N,∴M(5,0),N(0,10),解得,,∴C(1,8),∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.點睛:本題考查了一次函數圖象上點的坐標特征,反比例函數與一次函數交點問題,相似三角形的判定和性質,求函數的解析式,三角形的面積的計算,正確的作出輔助線是解題的關鍵.20、(1)(2)【解析】
(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.21、(x﹣y)2;2.【解析】
首先利用多項式的乘法法則以及多項式與單項式的除法法則計算,然后合并同類項即可化簡,然后代入數值計算即可.【詳解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,當x=2028,y=2時,原式=(2028﹣2)2=(﹣2)2=2.【點睛】本題考查的是整式的混合運算,正確利用多項式的乘法法則以及合并同類項法則是解題的關鍵.22、(1)證明見解析(2)①②3【解析】
(1)作輔助線,連接OE.根據切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據BC、DE兩切線的性質證明△ADE∽△BEC;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【點睛】本題考查了切線的性質、相似三角形的判定與性質.比較復雜,解答此題的關鍵是作出輔助線,利用數形結合解答.23、(1);(2)他們獲獎機會不相等,理由見解析.【解析】
(1)根據正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;(2)根據題意分別列出表格,然后由表格即可求得所有等可能的結果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率.【詳解】(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,∴獲獎的概率是;故答案為;(2)他們獲獎機會不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16種等可能的結果,翻開的兩張紙牌中只要出現笑臉的有12種情況,∴P(小芳獲獎)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12種等可能的結果,翻開的兩張紙牌中只要出現笑臉的有10種情況,∴P(小明獲獎)=,∵P(小芳獲獎)≠P(小明獲獎),∴他們獲獎的機會不相等.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.24、(1)兩次下降的百分率為10%;(2)要使每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則商品應降價2.1元.【解析】
(1)設每次降價的百分率為x,(1﹣x)2為兩次降價后的百分率,40元降至32.4元就是方程的等量條件,列出方程求解即可;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由銷售問題的數量關系建立方程求出其解即可【詳解】解:(1)設每次降價的百分率為x.40×(1﹣x)2=32.4x=10%或190%(190%不符合題意,舍去)答:該商品連續兩次下調相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由題意,得解得:=1.1,=2.1,∵有利于減少庫存,∴y=2.1.答:要使商場每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則每件商品應降價2.1元.【點睛】此題主要考查了一元二次方程的應用,關鍵是根據題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關系,列出方程,解答即可.25、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.【解析】試題分析:(1)把x=24代入y=﹣14x+544求出銷售的件數,然后求出政府承擔的成本價與出廠價之間的差價;(2)由利潤=銷售價﹣成本價,得w=(x﹣14)(﹣14x+544),把函數轉化成頂點坐標式,根據二次函數的性質求出最大利潤;(3)令﹣14x2+644x﹣5444=2,求出x的值,結合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據一次函數的性質求出總差價的最小值.試題解析:(1)當x=24時,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府這個月為他承擔的總差價為644元;(2)依題意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴當x=34時,w有最大值144元.即當銷售單價定為34元時,每月可獲得最大利潤144元;(3)由題意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,拋物線開口向下,∴結合圖象可知:當24≤x≤1時,w≥2.又∵x≤25,∴當24≤x≤25時,w≥2.設政府每個月為他承擔的總差價為p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p隨x的增大而減小,∴當x=25時,p有最小值544元.即銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.考點:二次函數的應用.26、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數法可求得拋物線解析式;(2)由B、D、E的坐標可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進行判斷;(3)由B、E的坐標可先求得直線BE的解析式,則可求得F點的坐標,當AF為邊時,則有FM∥AN且FM=AN,則可求得M點的縱坐標,代入拋物線解析式可求得M點坐標;當AF為對角線時,由A、F的坐標可求得平行四邊形的對稱中心,可設出M點坐標,則可表示出N點坐標,再由N點在x軸上可得到關于M點坐標的方程,可求得M點坐標.【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經過O、A兩點,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業運營中心合同樣本
- 優惠協議合同標準文本
- 出售貓咪售后合同標準文本
- 冷庫用工合同樣本
- 信用卡合作合同樣本
- 分析測試合同標準文本
- 獸藥進口代理合同標準文本
- 個人建筑房屋合同樣本
- 個人現金贈予合同樣本
- 2025年03月甘肅慶陽市鎮原縣青年見習筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2024年實驗室保密規定
- 2024年廣東省廣州市市中考英語試卷真題(含答案解析)
- 2024年國家林業和草原局華東調查規劃設計院招聘高校畢業生10人歷年(高頻重點復習提升訓練)共500題附帶答案詳解
- 2023年拉薩市“一考三評”備考試題庫-下(多選、判斷題部分)
- 資產評估收費管理辦法(2009)2914
- 2024-2029全球及中國柚子果實提取物行業市場發展分析及前景趨勢與投資發展研究報告
- 公共部位裝修合同
- 2024年廣東省惠州市惠城區中考二模物理試卷
- 2024年山東省青島市部分學校九年級中考二模數學試題(含答案)
- 中考語文專題復習十議論性文本閱讀市賽課公開課一等獎省名師獲獎課件
- 醫院化糞池清掏合同
評論
0/150
提交評論