2022年四川省眉山市丹棱縣重點中學中考考前最后一卷數學試卷含解析_第1頁
2022年四川省眉山市丹棱縣重點中學中考考前最后一卷數學試卷含解析_第2頁
2022年四川省眉山市丹棱縣重點中學中考考前最后一卷數學試卷含解析_第3頁
2022年四川省眉山市丹棱縣重點中學中考考前最后一卷數學試卷含解析_第4頁
2022年四川省眉山市丹棱縣重點中學中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年四川省眉山市丹棱縣重點中學中考考前最后一卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.2.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數為()A.42° B.66° C.69° D.77°3.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.104.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或65.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c6.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.7.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數y=xA.512B.49C.178.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)29.我國古代數學著作《孫子算經》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數和車數各多少?設車輛,根據題意,可列出的方程是().A. B.C. D.10.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數為()A.10° B.15° C.20° D.25°11.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()

A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定12.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設=,=,那么等于__(結果用、的線性組合表示).14.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據是__________________________________.15.菱形ABCD中,∠A=60°,AB=9,點P是菱形ABCD內一點,PB=PD=3,則AP的長為_____.16.計算﹣的結果為_____.17.我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數式可表示為尺,根據題意列方程為.18.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發現還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數關系如圖所示.已知小剛從家出發7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發5分鐘時乘上公交車;③小剛下公交車后跑向學校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(5分)計算:(120.(6分)如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)(參考數據:sin58°=0.85,cos58°=0.53,tan58°=1.60)21.(6分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.22.(8分)小明對,,,四個中小型超市的女工人數進行了統計,并繪制了下面的統計圖表,已知超市有女工20人.所有超市女工占比統計表超市女工人數占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.23.(8分)武漢市某中學的一個數學興趣小組在本校學生中開展主題為“垃圾分類知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷詞查的結果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數據整理如下表:等級非常了解比較了解只聽說過不了解頻數40120364頻率0.2m0.180.02(1)本次問卷調查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數據,寫出等級及其百分比;根據表中的數據計算等級為“非常了解”的頻數在扇形統計圖所對應的扇形的圓心角的度數;(3)若該校有學生1500人,請根據調查結果估計這些學生中“比較了解”垃圾分類知識的人數約為多少?24.(10分)在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統計數據:摸球的次數n10020030050080010003000摸到白球的次數m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?25.(10分)先化簡,再求值:,其中m是方程的根.26.(12分)對于某一函數給出如下定義:若存在實數m,當其自變量的值為m時,其函數值等于﹣m,則稱﹣m為這個函數的反向值.在函數存在反向值時,該函數的最大反向值與最小反向值之差n稱為這個函數的反向距離.特別地,當函數只有一個反向值時,其反向距離n為零.例如,圖中的函數有4,﹣1兩個反向值,其反向距離n等于1.(1)分別判斷函數y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數y=請直接寫出這個函數的反向距離的所有可能值,并寫出相應m的取值范圍.27.(12分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數y=的圖象上.(1)求反比例函數y=的表達式;(2)在x軸上是否存在一點P,使得S△AOP=S△AOB,若存在,求所有符合條件點P的坐標;若不存在,簡述你的理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:根據三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖2、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.3、D【解析】

利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,

∴∠BAD=90°,點O是線段BD的中點,

∵點M是AB的中點,

∴OM是△ABD的中位線,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.4、C【解析】

由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內容,理解題意是解題關鍵.5、A【解析】

根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.6、D【解析】【分析】根據在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.7、C【解析】分析:本題可先列出出現的點數的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數除以擲骰子可能出現的點數的總個數即可.解答:解:擲骰子有6×6=36種情況.根據題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.8、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數圖象與幾何變換.9、B【解析】

根據題意,表示出兩種方式的總人數,然后根據人數不變列方程即可.【詳解】根據題意可得:每車坐3人,兩車空出來,可得人數為3(x-2)人;每車坐2人,多出9人無車坐,可得人數為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點睛】此題主要考查了一元一次方程的應用,關鍵是找到問題中的等量關系:總人數不變,列出相應的方程即可.10、B【解析】

根據題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據平行線的性質即可解答【詳解】根據題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等11、B【解析】

因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點P是線段AB垂直平分線和圓的交點,

∴當C在⊙O上運動時,點P不動.

故選:B.【點睛】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.12、C【解析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.14、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】

利用正方形的性質得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.15、3或6【解析】

分成P在OA上和P在OC上兩種情況進行討論,根據△ABD是等邊三角形,即可求得OA的長度,在直角△OBP中利用勾股定理求得OP的長,則AP即可求得.【詳解】設AC和BE相交于點O.當P在OA上時,∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當P在OC上時,AP=OA+OP=.故答案是:3或6.【點睛】本題考查了菱形的性質,注意到P在AC上,應分兩種情況進行討論是解題的關鍵.16、.【解析】

根據同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關鍵.17、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.18、①②③【解析】

由公交車在7至12分鐘時間內行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向學校的速度.【詳解】解:公交車7至12分鐘時間內行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、8+23【解析】試題分析:利用負整數指數冪,零指數冪、絕對值、特殊角的三角函數值的定義解答.試題解析:原式=9+1-(2-3)+2×3考點:1.實數的運算;2.零指數冪;3.負整數指數冪;4.特殊角的三角函數值.20、調整后的滑梯AD比原滑梯AB增加2.5米【解析】試題分析:Rt△ABD中,根據30°的角所對的直角邊是斜邊的一半得到AD的長,然后在Rt△ABC中,求得AB的長后用即可求得增加的長度.試題解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD?AB=6?3.53≈2.5(m).∴調整后的滑梯AD比原滑梯AB增加2.5米.21、(1)-1;(2).【解析】

(1)根據零指數冪的意義、特殊角的銳角三角函數以及負整數指數冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【點睛】本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.22、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】

(1)用A超市有女工人數除以女工人數占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數,進一步得到四個中小型超市的女工人數比,從而求得B超市有女工多少人;

(2)先求出C超市有女工人數,進一步得到四個中小型超市共有女工人數,再根據概率的定義即可求解;

(3)先求出D超市有女工人數、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數、共有員工多少人,再根據概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統計表與扇形統計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.23、(1)200;0.6(2)非常了解20%,比較了解60%;72°;(3)900人【解析】

(1)根據非常了解的頻數與頻率即可求出本次問卷調查取樣的樣本容量,用1減去各等級的頻率即可得到m值;(2)根據非常了解的頻率、比較了解的頻率即可求出其百分比,與非常了解的圓心角度數;(3)用全校人數乘以非常了解的頻率即可.【詳解】解:(1)本次問卷調查取樣的樣本容量為40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比較了解60%;非常了解的圓心角度數:360°×20%=72°(3)1500×60%=900(人)答:“比較了解”垃圾分類知識的人數約為900人.【點睛】此題主要考查扇形統計圖的應用,解題的關鍵是根據頻數與頻率求出調查樣本的容量.24、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】試題分析:通過題意和表格,可知摸到白球的概率都接近與0.6,因此摸到白球的概率估計值為0.6.25、原式=.∵m是方程的根.∴,即,∴原式=.【解析】試題分析:先通分計算括號里的,再計算括號外的,化為最簡,由于m是方程的根,那么,可得的值,再把的值整體代入化簡后的式子,計算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點:分式的化簡求值;一元二次方程的解.26、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論