




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黃南市重點中學數學高一下期末質量跟蹤監視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.2.已知直線經過點,且傾斜角為,則直線的方程為()A. B.C. D.3.下列函數中,在區間上為減函數的是A. B. C. D.4.已知實心鐵球的半徑為,將鐵球熔成一個底面半徑為、高為的圓柱,則()A. B. C. D.5.已知點,則向量()A. B. C. D.6.某高級中學共有學生3000人,其中高二年級有學生800人,高三年級有學生1200人,為了調查學生的課外閱讀時長,現用分層抽樣的方法從所有學生中抽取75人進行問卷調查,則高一年級被抽取的人數為()A.20 B.25 C.30 D.357.已知圓經過點,且圓心為,則圓的方程為A. B.C. D.8.下圖所示的幾何體是由一個圓柱中挖去一個以圓柱的上底面為底面,下底面圓心為質點的圓錐面得到,現用一個垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)9.函數(其中,)的部分圖象如圖所示、將函數的圖象向左平移個單位長度,得到的圖象,則下列說法正確的是()A.函數為奇函數B.函數的單調遞增區間為C.函數為偶函數D.函數的圖象的對稱軸為直線10.已知等比數列的首項,公比,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.長時間的低頭,對人的身體如頸椎、眼睛等會造成定的損害,為了了解某群體中“低頭族”的比例,現從該群體包含老、中、青三個年齡段的人中采用分層抽樣的方法抽取人進行調查,已知這人里老、中、青三個年齡段的分配比例如圖所示,則這個群體里青年人人數為_____12.若的面積,則=13.在矩形中,,現將矩形沿對角線折起,則所得三棱錐外接球的體積是________.14.在平面直角坐標系中,從五個點:中任取三個,這三點能構成三角形的概率是_______.15.在正項等比數列中,,,則公比________.16.在直角坐標系中,已知任意角以坐標原點為頂點,以軸的非負半軸為始邊,若其終邊經過點,且,定義:,稱“”為“的正余弦函數”,若,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,且(1)當時,求及的值;(2)若函數的最小值是,求實數的值.18.已知數列{an}和{bn}滿足a1=1,b1=0,,.(1)證明:{an+bn}是等比數列,{an–bn}是等差數列;(2)求{an}和{bn}的通項公式.19.在銳角中,角所對的邊分別為,已知,,.(1)求角的大小;(2)求的面積.20.如圖,在△ABC中,cosC=,角B的平分線BD交AC于點D,設∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的長.21.已知數列的前項和,函數對任意的都有,數列滿足.(1)求數列,的通項公式;(2)若數列滿足,是數列的前項和,是否存在正實數,使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).2、C【解析】
根據傾斜角求得斜率,再根據點斜式寫出直線方程,然后化為一般式.【詳解】傾斜角為,斜率為,由點斜式得,即.故選C.【點睛】本小題主要考查傾斜角與斜率對應關系,考查直線的點斜式方程和一般式方程,屬于基礎題.3、D【解析】試題分析:在區間上為增函數;在區間上先增后減;在區間上為增函數;在區間上為減函數,選D.考點:函數增減性4、B【解析】
根據變化前后體積相同計算得到答案.【詳解】故答案選B【點睛】本題考查了球體積,圓柱體積,抓住變化前后體積不變是解題的關鍵.5、D【解析】
利用終點的坐標減去起點的坐標,即可得到向量的坐標.【詳解】∵點,,∴向量,,.故選:D.【點睛】本題考查向量的坐標表示,考查運算求解能力,屬于基礎題.6、B【解析】
通過計算三個年級的人數比例,于是可得答案.【詳解】抽取比例為753000=140,高一年級有【點睛】本題主要考查分層抽樣的相關計算,難度很小.7、D【解析】
先計算圓半徑,然后得到圓方程.【詳解】因為圓經過,且圓心為所以圓的半徑為,則圓的方程為.故答案選D【點睛】本題考查了圓方程,先計算半徑是解題的關鍵.8、D【解析】
根據圓錐曲線的定義和圓錐的幾何特征,分截面過旋轉軸時和截面不過旋轉軸時兩種情況,分析截面圖形的形狀,最后綜合討論結果,可得答案.【詳解】根據題意,當截面過旋轉軸時,圓錐的軸截面為等腰三角形,此時(1)符合條件;當截面不過旋轉軸時,圓錐的軸截面為雙曲線的一支,此時(4)符合條件;故截面圖形可能是(1)(4);故選:D.【點睛】本題考查的知識點是旋轉體,圓錐曲線的定義,關鍵是掌握圓柱與圓錐的幾何特征.9、B【解析】
本題首先可以根據題目所給出的圖像得出函數的解析式,然后根據三角函數平移的相關性質以及函數的解析式得出函數的解析式,最后通過函數的解析式求出函數的單調遞增區間,即可得出結果.【詳解】由函數的圖像可知函數的周期為、過點、最大值為3,所以,,,,,所以取時,函數的解析式為,將函數的圖像向左平移個單位長度得,當時,即時,函數單調遞增,故選B.【點睛】本題考查三角函數的相關性質,主要考查三角函數圖像的相關性質以及三角函數圖像的變換,函數向左平移個單位所得到的函數,考查推理論證能力,是中檔題.10、B【解析】
由等比數列的通項公式可得出.【詳解】解:由已知得,故選:B.【點睛】本題考查等比數列的通項公式的應用,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據餅狀圖得到青年人的分配比例;利用總數乘以比例即可得到青年人的人數.【詳解】由餅狀圖可知青年人的分配比例為:這個群體里青年人的人數為:人本題正確結果:【點睛】本題考查分層抽樣知識的應用,屬于基礎題.12、【解析】試題分析:,.考點:三角形的面積公式及余弦定理的變形.點評:由三角形的面積公式,再根據,直接可求出tanC的值,從而得到C.13、【解析】
取的中點,連接,三棱錐外接球的半徑再計算體積.【詳解】如圖,取的中點,連接.由題意可得,則所得三棱錐外接球的半徑,其體積為.故答案為【點睛】本題考查了三棱錐的外切球體積,計算是解題的關鍵.14、【解析】
分別算出兩點間的距離,共有種,構成三角形的條件為任意兩邊之和大于第三邊,所以在這10種中找出滿足條件的即可.【詳解】由兩點之間的距離公式,得:,,,任取三點有:,共10種,能構成三角形的有:,共6種,所求概率為:.【點睛】構成三角形必須滿足任意兩邊之和大于第三邊,則n個點共有個線段,找出滿足條件的即可,屬于中等難度題目.15、【解析】
利用等比中項可求出,再由可求出公比.【詳解】因為,,所以,,解得.【點睛】本題考查了等比數列的性質,考查了計算能力,屬于基礎題.16、【解析】試題分析:根據正余弦函數的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數的概念.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2).【解析】
(1)以向量為載體求解向量數量積、模長,我們只需要把向量坐標表示出來,最后用公式就能輕松完成;(2)由(1)可以把表達式求出,最終化成二次復合型函數模式,考慮軸與區間的位置關系,我們就能對函數進行進一步的研究.【詳解】(1)因為,所以又因為,所以(2),當時,.當時,不滿足.當時,,,不滿足.綜上,實數的值為.【點睛】在研究三角函數相關的性質(值域、對稱中心、對稱軸、單調性……)我們都是將其化為(或者余弦、正切相對應)的形式,利用整體思想,我們能比較方便的去研究他們相關性質.第二問中我們其實就是求最小值問題,當然摻雜了二次函數的“軸變區間定”的考點.,綜合性較強.18、(1)見解析;(2),.【解析】
(1)可通過題意中的以及對兩式進行相加和相減即可推導出數列是等比數列以及數列是等差數列;(2)可通過(1)中的結果推導出數列以及數列的通項公式,然后利用數列以及數列的通項公式即可得出結果.【詳解】(1)由題意可知,,,,所以,即,所以數列是首項為、公比為的等比數列,,因為,所以,數列是首項、公差為的等差數列,.(2)由(1)可知,,,所以,.【點睛】本題考查了數列的相關性質,主要考查了等差數列以及等比數列的相關證明,證明數列是等差數列或者等比數列一定要結合等差數列或者等比數列的定義,考查推理能力,考查化歸與轉化思想,是中檔題.19、(1);(2).【解析】試題分析:(1)先由正弦定理求得與的關系,然后結合已知等式求得的值,從而求得的值;(2)先由余弦定理求得的值,從而由的范圍取舍的值,進而由面積公式求解.試題解析:(1)在中,由正弦定理,得,即.又因為,所以.因為為銳角三角形,所以.(2)在中,由余弦定理,得,即.解得或.當時,因為,所以角為鈍角,不符合題意,舍去.當時,因為,又,所以為銳角三角形,符合題意.所以的面積.考點:1、正余弦定理;2、三角形面積公式.20、(1)(2)【解析】
(1)根據二倍角公式及同角基本關系式,求出cos∠ABC,進而可求出sinA;(2)根據正弦定理求出AC,BC的關系,利用向量的數量積公式求出AC,可得BC,正弦定理可得答案.【詳解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,則sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又?AC2?21,∴AC=5,∴ABAC=4.【點睛】本題考查了二倍角公式、同角基本關系式和正弦定理的靈活運用和計算能力,是中檔題.21、(1),;(2).【解析】分析:(1)利用的關系,求解;倒序相加求。(2)先用錯位相減求,分離參數,使得對于一切的恒成立,轉化為求的最值。詳解:(1)時滿足上式,故∵=1∴∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公軟件應用技術考試
- 2025中文合同談判常用句型
- 人工挖井合同樣本
- 二零二五版知識產權服務框架協議
- 個人退股協議書范例二零二五年
- 商鋪產權轉讓合同
- 2025四川房屋租賃合同范本
- 聘用兼職教師合同二零二五年
- 工業品買賣合同參考
- 二零二五食品安全協議責任書
- 吉林省吉林市2024-2025學年高三下學期3月三模試題 生物 含答案
- 2025年陜西農業發展集團有限公司(陜西省土地工程建設集團)招聘(200人)筆試參考題庫附帶答案詳解
- 2025年03月中央社會工作部所屬事業單位公開招聘11人筆試歷年參考題庫考點剖析附解題思路及答案詳解
- 2025年中高端女裝市場趨勢與前景深度分析
- 2025北京清華附中高三(下)統練一數學(教師版)
- 2025-2030中國孵化器行業市場發展前瞻及投資戰略研究報告
- 5.3基本經濟制度 課件 2024-2025學年統編版道德與法治八年級下冊
- Unit4 Breaking Boundaries 單元教學設計-2024-2025學年高中英語外研版(2019)選擇性必修第二冊
- T-CCTAS 61-2023 橋梁承重纜索抗火密封綜合防護技術規程
- 2025慢性阻塞性肺病(GOLD)指南更新要點解讀課件
- 2024年05月湖北中國郵政儲蓄銀行湖北省分行春季校園招考筆試歷年參考題庫附帶答案詳解
評論
0/150
提交評論