湖北省襄樊市名校2024屆中考猜題數學試卷含解析_第1頁
湖北省襄樊市名校2024屆中考猜題數學試卷含解析_第2頁
湖北省襄樊市名校2024屆中考猜題數學試卷含解析_第3頁
湖北省襄樊市名校2024屆中考猜題數學試卷含解析_第4頁
湖北省襄樊市名校2024屆中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省襄樊市名校2024屆中考猜題數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,,結論:①;②;③;④,其中正確的是有()A.1個 B.2個 C.3個 D.4個2.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,則該幾何體的左視圖是()A. B.C. D.3.如果代數式有意義,則實數x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥34.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.35.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°6.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1057.若關于x、y的方程組有實數解,則實數k的取值范圍是()A.k>4 B.k<4 C.k≤4 D.k≥48.某射擊選手10次射擊成績統計結果如下表,這10次成績的眾數、中位數分別是()成績(環)78910次數1432A.8、8 B.8、8.5 C.8、9 D.8、109.下列說法中,正確的個數共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個10.如圖,平行四邊形ABCD的周長為12,∠A=60°,設邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數關系的圖象大致是()A. B. C. D.11.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數.小昱在第1頁寫1,且之后每一頁寫的數均為他在前一頁寫的數加2;阿帆在第1頁寫1,且之后每一頁寫的數均為他在前一頁寫的數加1.若小昱在某頁寫的數為101,則阿帆在該頁寫的數為何?()A.350 B.351 C.356 D.35812.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.14.二次函數的圖象與y軸的交點坐標是________.15.如圖,等邊三角形的頂點A(1,1)、B(3,1),規定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續經過2018次變換后,等邊△ABC的頂點C的坐標為_____.16.若使代數式有意義,則x的取值范圍是_____.17.若代數式的值不小于代數式的值,則x的取值范圍是_____.18.如圖,正比例函數y=kx與反比例函數y=的圖象有一個交點A(2,m),AB⊥x軸于點B,平移直線y=kx使其經過點B,得到直線l,則直線l對應的函數表達式是_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去揚州馬可波羅花世界游玩.小明和小剛都在本周日上午去游玩的概率為________;求他們三人在同一個半天去游玩的概率.20.(6分)為落實黨中央“長江大保護”新發展理念,我市持續推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復綠施工,為了縮短工期,該工程隊增加了人力和設備,實際工作效率比原計劃每天提高了20%,結果提前11天完成任務,求實際平均每天施工多少平方米?21.(6分)小明對,,,四個中小型超市的女工人數進行了統計,并繪制了下面的統計圖表,已知超市有女工20人.所有超市女工占比統計表超市女工人數占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.22.(8分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.23.(8分)解方程組.24.(10分)如圖,在平面直角坐標中,點O是坐標原點,一次函數y1=kx+b與反比例函數y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據圖象寫出當y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.25.(10分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉,與AC邊交于點N.①根據條件補全圖形;②寫出DM與DN的數量關系并證明;③用等式表示線段BM、CN與BC之間的數量關系,(用含的銳角三角函數表示)并寫出解題思路.26.(12分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統計圖和條形統計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現要從中隨機抽取2名同學代表班級參加校籃球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.27.(12分)某省為解決農村飲用水問題,省財政部門共投資20億元對各市的農村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據已知的條件,可由AAS判定△AEB≌△AFC,進而可根據全等三角形得出的結論來判斷各選項是否正確.【詳解】解:如圖:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正確)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正確)由于條件不足,無法證得②CD=DN;故正確的結論有:①③④;故選C.【點睛】此題主要考查的是全等三角形的判定和性質,做題時要從最容易,最簡單的開始,由易到難.2、D【解析】根據俯視圖中每列正方形的個數,再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:

.故選D.3、C【解析】

根據二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關知識是解題的關鍵.4、B【解析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.5、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據三角形內角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質及三角形內角和定理,解題的關鍵是先根據平行線的性質求出∠C,再由CD=CE得出∠D=∠CED,由三角形內角和定理求出∠D.6、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】55000是5位整數,小數點向左移動4位后所得的數即可滿足科學記數法的要求,由此可知10的指數為4,所以,55000用科學記數法表示為5.5×104,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、C【解析】

利用根與系數的關系可以構造一個兩根分別是x,y的一元二次方程,方程有實數根,用根的判別式≥0來確定k的取值范圍.【詳解】解:∵xy=k,x+y=4,∴根據根與系數的關系可以構造一個關于m的新方程,設x,y為方程的實數根.解不等式得故選:C.【點睛】本題考查了一元二次方程的根的判別式的應用和根與系數的關系.解題的關鍵是了解方程組有實數根的意義.8、B【解析】

根據眾數和中位數的概念求解.【詳解】由表可知,8環出現次數最多,有4次,所以眾數為8環;這10個數據的中位數為第5、6個數據的平均數,即中位數為=8.5(環),故選:B.【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.9、C【解析】

根據外接圓的性質,圓的對稱性,三角形的內心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內心是三個內角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質,三角形的內心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.10、C【解析】

過點B作BE⊥AD于E,構建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數關系式,結合函數關系式找到對應的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數的圖像,根據題意求出正確的函數關系式是解題的關鍵.11、B【解析】

根據題意確定出小昱和阿帆所寫的數字,設小昱所寫的第n個數為101,根據規律確定出n的值,即可確定出阿帆在該頁寫的數.【詳解】解:小昱所寫的數為1,3,5,1,…,101,…;阿帆所寫的數為1,8,15,22,…,設小昱所寫的第n個數為101,根據題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數的混合運算,弄清題中的規律是解本題的關鍵.12、C【解析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯立兩直線解析式得:,解得:,即交點坐標為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數圖象與幾何變換.14、【解析】

求出自變量x為1時的函數值即可得到二次函數的圖象與y軸的交點坐標.【詳解】把代入得:,∴該二次函數的圖象與y軸的交點坐標為,故答案為.【點睛】本題考查了二次函數圖象上點的坐標特征,在y軸上的點的橫坐標為1.15、(﹣2016,+1)【解析】

據軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據平移的距離求出點A變換后的橫坐標,最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續2018次這樣的變換得到三角形在x軸上方是解題的關鍵.16、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.17、x≥【解析】

根據題意列出不等式,依據解不等式得基本步驟求解可得.【詳解】解:根據題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關鍵.18、y=x-3【解析】【分析】由已知先求出點A、點B的坐標,繼而求出y=kx的解析式,再根據直線y=kx平移后經過點B,可設平移后的解析式為y=kx+b,將B點坐標代入求解即可得.【詳解】當x=2時,y==3,∴A(2,3),B(2,0),∵y=kx過點A(2,3),∴3=2k,∴k=,∴y=x,∵直線y=x平移后經過點B,∴設平移后的解析式為y=x+b,則有0=3+b,解得:b=-3,∴平移后的解析式為:y=x-3,故答案為:y=x-3.【點睛】本題考查了一次函數與反比例函數的綜合應用,涉及到待定系數法,一次函數圖象的平移等,求出k的值是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】

(1)根據題意,畫樹狀圖列出三人隨機選擇上午或下午去游玩的所有等可能結果,找到小明和小剛都在本周日上午去游玩的結果,根據概率公式計算可得;(2)由(1)中樹狀圖,找到三人在同一個半天去游玩的結果,根據概率公式計算可得.【詳解】解:(1)根據題意,畫樹狀圖如圖:由樹狀圖可知,三人隨機選擇本周日的上午或下午去游玩共有8種等可能結果,其中小明和小剛都在本周日上午去游玩的結果有(上,上,上)、(上,上,下)2種,∴小明和小剛都在本周日上午去游玩的概率為=;(2)由(1)中樹狀圖可知,他們三人在同一個半天去游玩的結果有(上,上,上)、(下,下,下)這2種,∴他們三人在同一個半天去游玩的概率為=.答:他們三人在同一個半天去游玩的概率是.【點睛】本題考查的是用列表法或樹狀圖法求概率.注意列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.20、1平方米【解析】

設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據時間=工作總量÷工作效率結合提前11天完成任務,即可得出關于x的分式方程,解之即可得出結論.【詳解】解:設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據題意得:﹣=11,解得:x=500,經檢驗,x=500是原方程的解,∴1.2x=1.答:實際平均每天施工1平方米.【點睛】考查了分式方程的應用,解題的關鍵是找準等量關系,正確列出分式方程.21、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】

(1)用A超市有女工人數除以女工人數占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數,進一步得到四個中小型超市的女工人數比,從而求得B超市有女工多少人;

(2)先求出C超市有女工人數,進一步得到四個中小型超市共有女工人數,再根據概率的定義即可求解;

(3)先求出D超市有女工人數、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數、共有員工多少人,再根據概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統計表與扇形統計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.22、(1);(2)【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有12種等可能的結果數,再找出選中的恰好是正確答案A,B的結果數,然后根據概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;

(2)畫樹狀圖:

共有12種等可能的結果數,其中選中的恰好是正確答案A,B的結果數為2,

所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.23、或.【解析】

把y=x代入,解得x的值,然后即可求出y的值;【詳解】把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,當x=﹣2時,y=﹣2,當x=1時,y=1,∴原方程組的解是或.【點睛】本題考查了高次方程的解法,關鍵是用代入法先求出一個未知數,再代入求出另一個未知數.24、(1)y=﹣x+4;(2)1<x<1;(1)2.【解析】

(1)依據反比例函數y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次函數y1=kx+b,可得直線AB的解析式;(2)當1<x<1時,正比例函數圖象在反比例函數圖象的上方,即可得到當y1>y2時,x的取值范圍是1<x<1;(1)作點A關于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,利用勾股定理即可得到BC的長.【詳解】(1)A(1,m)、B(n,1)兩點坐標分別代入反比例函數y2=(x>0),可得m=1,n=1,∴A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函數y1=kx+b,可得,解得,∴直線AB的解析式為y=-x+4;(2)觀察函數圖象,發現:當1<x<1時,正比例函數圖象在反比例函數圖象的上方,∴當y1>y2時,x的取值范圍是1<x<1.(1)如圖,作點A關于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,過C作y軸的平行線,過B作x軸的平行線,交于點D,則Rt△BCD中,BC=,∴PA+PB的最小值為2.【點睛】本題考查的是反比例函數與一次函數的交點問題,根據函數圖象的上下位置關系結合交點的橫坐標,得出不等式的取值范圍是解答此題的關鍵.25、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數量關系:【解析】

(1)先利用等腰三角形的性質和三角形內角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質得到DA平分∠BAC,再根據角平分線性質得到DE=DF,根據四邊形內角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論