云南省昆明市官渡區藝卓中學2023-2024學年高三六校第一次聯考數學試卷含解析_第1頁
云南省昆明市官渡區藝卓中學2023-2024學年高三六校第一次聯考數學試卷含解析_第2頁
云南省昆明市官渡區藝卓中學2023-2024學年高三六校第一次聯考數學試卷含解析_第3頁
云南省昆明市官渡區藝卓中學2023-2024學年高三六校第一次聯考數學試卷含解析_第4頁
云南省昆明市官渡區藝卓中學2023-2024學年高三六校第一次聯考數學試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省昆明市官渡區藝卓中學2023-2024學年高三六校第一次聯考數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,若,則與夾角的余弦值為()A. B. C. D.2.已知向量,,則向量與的夾角為()A. B. C. D.3.展開項中的常數項為A.1 B.11 C.-19 D.514.在中,,,,若,則實數()A. B. C. D.5.已知定義在上的奇函數滿足:(其中),且在區間上是減函數,令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.6.用1,2,3,4,5組成不含重復數字的五位數,要求數字4不出現在首位和末位,數字1,3,5中有且僅有兩個數字相鄰,則滿足條件的不同五位數的個數是()A.48 B.60 C.72 D.1207.已知函數,集合,,則()A. B.C. D.8.函數f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數的圖象向右平移個單位后得到的函數圖象關于直線x=對稱,則函數f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)9.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.10.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()11.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.設數列的各項均為正數,前項和為,,且,則()A.128 B.65 C.64 D.63二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦距為__________,漸近線方程為________.14.曲線在點處的切線方程為______.15.設為數列的前項和,若,,且,,則________.16.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經濟損失達52億元.某青年志愿者組織調查了某地區的50個農戶在該次臺風中造成的直接經濟損失,將收集的數據分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據頻率分布直方圖估計該地區每個農戶的平均損失(同一組中的數據用該組區間的中點值代表);(2)臺風后該青年志愿者與當地政府向社會發出倡議,為該地區的農戶捐款幫扶,現從這50戶并且損失超過4000元的農戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農戶數為,求的分布列和數學期望.18.(12分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數根,且,證明:.19.(12分)已知函數,若的解集為.(1)求的值;(2)若正實數,,滿足,求證:.20.(12分)在中,內角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.21.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.22.(10分)已知函數.(1)求不等式的解集;(2)若不等式對恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數量積的應用,考查運算求解能力以及化歸與轉化思想.2、C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數量積的坐標表示.求向量夾角時,通常代入公式進行計算.3、B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.4、D【解析】

將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.5、A【解析】因為,所以,即周期為4,因為為奇函數,所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數對稱性代數表示(1)函數為奇函數,函數為偶函數(定義域關于原點對稱);(2)函數關于點對稱,函數關于直線對稱,(3)函數周期為T,則6、A【解析】

對數字分類討論,結合數字中有且僅有兩個數字相鄰,利用分類計數原理,即可得到結論【詳解】數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個數字出現在第位時,同理也有個數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個故滿足條件的不同的五位數的個數是個故選【點睛】本題主要考查了排列,組合及簡單計數問題,解題的關鍵是對數字分類討論,屬于基礎題。7、C【解析】

分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.8、D【解析】

由函數的周期求得,再由平移后的函數圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數的周期求得,再由平移后的函數圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數的最小正周期是,所以,解得,所以,將該函數的圖像向右平移個單位后,得到圖像所對應的函數解析式為,由此函數圖像關于直線對稱,得:,即,取,得,滿足,所以函數的解析式為,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及函數的解析式的求解,其中解答中根據三角函數的圖象變換得到,再根據三角函數的性質求解是解答的關鍵,著重考查了推理與運算能力.9、A【解析】

依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于中檔題.10、B【解析】

如圖所示:連接,根據垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.11、B【解析】

化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.12、D【解析】

根據,得到,即,由等比數列的定義知數列是等比數列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數列是等比數列,又因為,所以,.故選:D【點睛】本題主要考查等比數列的定義及等比數列的前n項和公式,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.14、【解析】

對函數求導,得出在處的一階導數值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數的導函數求函數在切點處的切線方程,關鍵在于求出在切點處的導函數值就是切線的斜率,屬于基礎題.15、【解析】

由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數列是以為首項,為公差的等差數列,所以.16、【解析】

設圓柱的軸截面的邊長為x,可求得,代入圓柱的表面積公式,即得解【詳解】設圓柱的軸截面的邊長為x,則由,得,∴.故答案為:【點睛】本題考查了圓柱的軸截面和表面積,考查了學生空間想象,轉化劃歸,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3360元;(2)見解析【解析】

(1)根據頻率分布直方圖計算每個農戶的平均損失;(2)根據頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數學期望值.【詳解】(1)記每個農戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數學期望為E(X)=0×+1×+2×=.【點睛】本題考查了頻率分布直方圖與離散型隨機變量的分布列與數學期望計算問題,屬于中檔題.18、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】

(Ⅰ)根據導數的幾何意義求解即可.(Ⅱ)求導分析函數的單調性,并構造函數根據單調性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(Ⅰ)(Ⅱ)的結論可知,在上恒成立,再分別設的解為、.再根據不等式的性質證明即可.【詳解】(Ⅰ)由題,故.且.故在點處的切線方程為.(Ⅱ)設恒成立,故.設函數則,故在上單調遞減且,又在上單調遞增.又,即且,故只能在處取得最小值,當時,此時,且在上,單調遞減.在上,單調遞增.故,滿足題意;當時,此時有解,且在上單調遞減,與矛盾;當時,此時有解,且在上單調遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調遞減且,又在上單調遞增,故最多一根.又因為,,故設的解為,因為,故.所以在遞減,在遞增.因為方程有兩個實數根,故.結合(Ⅰ)(Ⅱ)有,在上恒成立.設的解為,則;設的解為,則.故,.故,得證.【點睛】本題主要考查了導數的幾何意義以及根據函數的單調性與最值求解參數值的問題.同時也考查了構造函數結合前問的結論證明不等式的方法.屬于難題.19、(1);(2)證明見詳解.【解析】

(1)將不等式的解集用表示出來,結合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當且僅當,,,等號成立.【點睛】本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎題.21、(1)(2)【解析】

(1)直接利用極坐標公式計算得到答案(2)設,,根據三角函數的有界性得到答案.【詳解】(1)因為,所以,因為所以直線的直角坐標方程為.(2)由題意可設,則點到直線的距離.因為,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論