




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黑龍江省齊齊哈爾市鐵鋒區中考二模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是由五個相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.2.甲、乙兩位同學做中國結,已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結的個數.如果設甲每小時做x個,那么可列方程為()A.= B.=C.= D.=3.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.24.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.85.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°6.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.7.為弘揚傳統文化,某校初二年級舉辦傳統文化進校園朗誦大賽,小明同學根據比賽中九位評委所給的某位參賽選手的分數,制作了一個表格,如果去掉一個最高分和一個最低分,則表中數據一定不發生變化的是()中位數眾數平均數方差9.29.39.10.3A.中位數 B.眾數 C.平均數 D.方差8.下面的統計圖反映了我國最近十年間核電發電量的增長情況,根據統計圖提供的信息,下列判斷合理的是()A.2011年我國的核電發電量占總發電量的比值約為1.5%B.2006年我國的總發電量約為25000億千瓦時C.2013年我國的核電發電量占總發電量的比值是2006年的2倍D.我國的核電發電量從2008年開始突破1000億千瓦時9.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發,沿AC方向勻速運動到終點C,動點Q從點C出發,沿CB方向勻速運動到終點B.已知P,Q兩點同時出發,并同時到達終點.連結MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小10.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知AB∥CD,F為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數為整數,則∠C的度數為_____.12.如圖,在矩形ABCD中,AB=,E是BC的中點,AE⊥BD于點F,則CF的長是_________.13.如圖,在正方形中,對角線與相交于點,為上一點,,為的中點.若的周長為18,則的長為________.14.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數法可表示為.15.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.16.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.17.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.三、解答題(共7小題,滿分69分)18.(10分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.19.(5分)全民學習、終身學習是學習型社會的核心內容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調查,并根據收集的數據繪制了下面兩幅不完整的統計圖,請根據圖中提供的信息,解答下列問題:本次抽樣調查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數是度;若該社區有家庭有3000個,請你估計該社區學習時間不少于1小時的約有多少個家庭?20.(8分)某化工材料經銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規定其銷售單價不高于每千克70元,不低于每千克40元.經市場調查發現,日銷量y(千克)是銷售單價x(元)的一次函數,且當x=70時,y=80;x=60時,y=1.在銷售過程中,每天還要支付其他費用350元.求y與x的函數關系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式;當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?21.(10分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.22.(10分)如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).23.(12分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.24.(14分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:從上面看易得上面一層有3個正方形,下面中間有一個正方形.故選A.【考點】簡單組合體的三視圖.2、A【解析】
設甲每小時做x個,乙每小時做(x+6)個,根據甲做30個所用時間與乙做45個所用時間相等即可列方程.【詳解】設甲每小時做x個,乙每小時做(x+6)個,根據甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【點睛】本題考查了分式方程的應用,找到關鍵描述語,正確找出等量關系是解決問題的關鍵.3、A【解析】試題分析:先根據折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.4、B【解析】
根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵5、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質;余角和補角.6、B【解析】
先利用三角函數求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規則圖形面積轉化為規則圖形的面積.7、A【解析】
根據中位數:將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數可得答案.【詳解】如果去掉一個最高分和一個最低分,則表中數據一定不發生變化的是中位數.故選A.點睛:本題主要考查了中位數,關鍵是掌握中位數定義.8、B【解析】
由折線統計圖和條形統計圖對各選項逐一判斷即可得.【詳解】解:A、2011年我國的核電發電量占總發電量的比值大于1.5%、小于2%,此選項錯誤;B、2006年我國的總發電量約為500÷2.0%=25000億千瓦時,此選項正確;C、2013年我國的核電發電量占總發電量的比值是2006年的顯然不到2倍,此選項錯誤;D、我國的核電發電量從2012年開始突破1000億千瓦時,此選項錯誤;故選:B.【點睛】本題考查的是條形統計圖和折線統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;折線統計圖表示的是事物的變化情況.9、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發,并同時到達終點,從而點P到達AC的中點時,點Q也到達BC的中點,此時,S△MPQ=S△ABC;結束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.10、C【解析】
本題考查探究、歸納的數學思想方法.題中明確指出:任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.由于“正方形數”為兩個“三角形數”之和,正方形數可以用代數式表示為:(n+1)2,兩個三角形數分別表示為n(n+1)和(n+1)(n+2),所以由正方形數可以推得n的值,然后求得三角形數的值.【詳解】∵A中13不是“正方形數”;選項B、D中等式右側并不是兩個相鄰“三角形數”之和.故選:C.【點睛】此題是一道找規律的題目,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.二、填空題(共7小題,每小題3分,滿分21分)11、36°或37°.【解析】分析:先過E作EG∥AB,根據平行線的性質可得∠AEF=∠BAE+∠DFE,再設∠CEF=x,則∠AEC=2x,根據6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進而得到∠C的度數.詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數為整數,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質以及三角形外角性質的運用,解決問題的關鍵是作平行線,解題時注意:兩直線平行,內錯角相等.12、【解析】試題解析:∵四邊形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中點,過F作FG⊥BC于G,故答案為13、【解析】
先根據直角三角形的性質求出DE的長,再由勾股定理得出CD的長,進而可得出BE的長,由三角形中位線定理即可得出結論.【詳解】解:∵四邊形是正方形,∴,,.在中,為的中點,∴.∵的周長為18,,∴,∴.在中,根據勾股定理,得,∴,∴.在中,∵,為的中點,又∵為的中位線,∴.故答案為:.【點睛】本題考查的是正方形的性質,涉及到直角三角形的性質、三角形中位線定理等知識,難度適中.14、2.58×1【解析】科學記數法就是將一個數字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數.即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.258000=2.58×1.15、1.【解析】分析:根據同一時刻物高與影長成比例,列出比例式再代入數據計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立數學模型來解決問題.16、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).17、1.【解析】
連接OD,根據圓的切線定理和等腰三角形的性質可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質.三、解答題(共7小題,滿分69分)18、這棟高樓的高度是【解析】
過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據三角函數的定義求得BD和CD,再根據BC=BD+CD即可求解.【詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點睛】本題主要考查了解直角三角形的應用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉化為直角三角形的計算.19、(1)200;(2)見解析;(3)36;(4)該社區學習時間不少于1小時的家庭約有2100個.【解析】
(1)根據1.5~2小時的圓心角度數求出1.5~2小時所占的百分比,再用1.5~2小時的人數除以所占的百分比,即可得出本次抽樣調查的總家庭數;(2)用抽查的總人數乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數,再用總人數減去其它家庭數,求出學習2-2.5小時的家庭數,從而補全統計圖;(3)用360°乘以學習時間在2~2.5小時所占的百分比,即可求出學習時間在2~2.5小時的部分對應的扇形圓心角的度數;(4)用該社區所有家庭數乘以學習時間不少于1小時的家庭數所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調查的家庭數是:30÷=200(個);故答案為200;(2)學習0.5﹣1小時的家庭數有:200×=60(個),學習2﹣2.5小時的家庭數有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學習時間在2~2.5小時的部分對應的扇形圓心角的度數是:360×=36°;故答案為36;(4)根據題意得:3000×=2100(個).答:該社區學習時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統計圖、扇形統計圖及相關計算.在扇形統計圖中,每部分占總部分的百分比等于該部分所對應的扇形圓心角的度數與360°的比.20、(1)y=﹣2x+220(40≤x≤70);(2)w=﹣2x2+300x﹣9150;(3)當銷售單價為70元時,該公司日獲利最大,為2050元.【解析】
(1)根據y與x成一次函數解析式,設為y=kx+b(k≠0),把x與y的兩對值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;(2)根據利潤=單價×銷售量,列出w關于x的二次函數解析式即可;(3)利用二次函數的性質求出w的最大值,以及此時x的值即可.【詳解】(1)設y=kx+b(k≠0),根據題意得,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70時,w有最大值為w=﹣2×25+21=2050元,∴當銷售單價為70元時,該公司日獲利最大,為2050元.【點睛】此題考查了二次函數的應用,待定系數法求一次函數解析式,以及二次函數的性質,熟練掌握二次函數性質是解本題的關鍵.21、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,OG=OD+DG=1+9=10,所以,點P的坐標是(3,﹣10),綜上所述,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,滿足條件的點P共有4個,其坐標分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點:1.相似三角形的判定與性質;2.二次函數動點問題;3.一次函數與二次函數綜合題.22、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解析】試題分析:首先過點C作CO⊥AB,根據Rt△AOC求出OA的長度,根據Rt△CBO求出OB的長度,然后進行計算.試題解析:如圖,過點C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長約為635m.考點:銳角三角函數的應用.23、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025全員安全培訓考試試題(典型題)
- 2024-2025公司項目負責人安全培訓考試試題及參考答案(基礎題)
- 2025年中國CDMA呼叫交換系統數據監測研究報告
- 從理論到實踐解析醫療科技產品設計過程
- 繅絲和絹紡細紗機企業數字化轉型與智慧升級戰略研究報告
- 電熱氮化窯企業數字化轉型與智慧升級戰略研究報告
- 無源光分路器企業ESG實踐與創新戰略研究報告
- 單眼并條機企業ESG實踐與創新戰略研究報告
- 白酒制造企業縣域市場拓展與下沉戰略研究報告
- 腈綸(干法紡)原液制取設備企業縣域市場拓展與下沉戰略研究報告
- 這個殺手不太冷解析
- 造口袋技術要求
- 國家開放大學(江西)地域文化(專)任務1-4試題及答案
- QCR 409-2017 鐵路后張法預應力混凝土梁管道壓漿技術條件
- 南師地信培養方案
- 采購工作調研報告(3篇)
- 10KV高壓開關柜操作(培訓課件PPT)
- 希爾國際商務第11版英文教材課件完整版電子教案
- 《學弈》優質課一等獎課件
- 2023年6月大學英語四級考試真題(第1套)(含答案)
- SWITCH塞爾達傳說曠野之息-1.6金手指127項修改使用說明教程
評論
0/150
提交評論