




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆徽省臨泉重點達標名校中考數學押題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,2.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD3.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.44.若,則3(x-2)2A.﹣6B.6C.18D.305.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數為()A.100° B.110° C.120° D.130°6.如果一個正多邊形內角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.7.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數為()A.125° B.135° C.145° D.155°8.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°9.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<410.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤211.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數為()A.80° B.90° C.100° D.102°12.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數是()A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.規定用符號表示一個實數的整數部分,例如:,.按此規定,的值為________.14.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.15.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.16.如圖,點A(m,2),B(5,n)在函數(k>0,x>0)的圖象上,將該函數圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′.圖中陰影部分的面積為8,則k的值為.17.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_________.18.用正三角形、正四邊形和正六邊形按如圖所示的規律拼圖案,即從第二個圖案開始,每個圖案中正三角形的個數都比上一個圖案中正三角形的個數多4個,則第n個圖案中正三角形的個數為(用含n的代數式表示).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)老師布置了一個作業,如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學寫出了如圖2所示的證明過程,老師說該同學的作業是錯誤的.請你解答下列問題:能找出該同學錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.20.(6分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.21.(6分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.22.(8分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?23.(8分)如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.24.(10分)列方程解應用題:某景區一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?25.(10分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結果精確到0.1米)參考數據:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41426.(12分)某省為解決農村飲用水問題,省財政部門共投資20億元對各市的農村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?27.(12分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數量分別為多少個?(2)由于春節期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
首先根據題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.2、D【解析】
解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定3、D【解析】
①根據作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結論是:①②③④,,共有4個.故選D.4、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.5、B【解析】
根據同弧所對的圓周角是圓心角度數的一半即可解題.【詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數的一半),故選B.【點睛】本題考查了圓周角和圓心角的關系,屬于簡單題,熟悉概念是解題關鍵.6、A【解析】
首先設此多邊形為n邊形,根據題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設此多邊形為n邊形,根據題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內角和與外角和的知識.注意掌握多邊形內角和定理:(n-2)?180°,外角和等于360°.7、A【解析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質、三角形內角和定理,鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題.8、B【解析】
先根據多邊形的內角和公式分別求得正六邊形和正五邊形的每一個內角的度數,再根據多邊形的內角和公式求得∠APG的度數.【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內角與外角,關鍵是熟悉多邊形內角和定理:(n﹣2)?180(n≥3)且n為整數).9、A【解析】
根據一元一次不等式的解法,移項,合并同類項,系數化為1即可得解.【詳解】移項得:?x>3?1,合并同類項得:?x>2,系數化為1得:x<-4.故選A.【點睛】本題考查了解一元一次不等式,解題的關鍵是熟練的掌握一元一次不等式的解法.10、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D11、A【解析】分析:根據平行線性質求出∠A,根據三角形內角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質:兩直線平行,內錯角相等.三角形內角和定理:三角形內角和為180°.12、B【解析】試題分析:根據俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】
根據規定,取的整數部分即可.【詳解】∵,∴∴整數部分為4.【點睛】本題考查無理數的估值,熟記方法是關鍵.14、【解析】
由直線a∥b∥c,根據平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【詳解】解:由直線a∥b∥c,根據平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.【點睛】此題考查了平行線分線段成比例定理.題目比較簡單,解題的關鍵是注意數形結合思想的應用.15、3【解析】
如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質、三角形的中位線定理、菱形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.16、2.【解析】試題分析:∵將該函數圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點:2.反比例函數系數k的幾何意義;2.平移的性質;3.綜合題.17、1:4【解析】
由S△BDE:S△CDE=1:3,得到
,于是得到
.【詳解】解:兩個三角形同高,底邊之比等于面積比.故答案為【點睛】本題考查了三角形的面積,比例的性質等知識,知道等高不同底的三角形的面積的比等于底的比是解題的關鍵.18、4n+1【解析】
分析可知規律是每個圖案中正三角形的個數都比上一個圖案中正三角形的個數多4個.【詳解】解:第一個圖案正三角形個數為6=1+4;第二個圖案正三角形個數為1+4+4=1+1×4;第三個圖案正三角形個數為1+1×4+4=1+3×4;…;第n個圖案正三角形個數為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點:規律型:圖形的變化類.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)能,見解析;(2)見解析.【解析】
(1)直接利用菱形的判定方法分析得出答案;
(2)直接利用全等三角形的判定與性質得出EO=FO,進而得出答案.【詳解】解:(1)能;該同學錯在AC和EF并不是互相平分的,EF垂直平分AC,但未證明AC垂直平分EF,需要通過證明得出;(2)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠FAC=∠ECA.∵EF是AC的垂直平分線,∴OA=OC.∵在△AOF與△COE中,,∴△AOF≌△COE(ASA).∴EO=FO.∴AC垂直平分EF.∴EF與AC互相垂直平分.∴四邊形AECF是菱形.【點睛】本題主要考查了平行四邊形的性質,菱形的判定,全等三角形的判定與性質,正確得出全等三角形是解題關鍵.20、(1)①6,②2或4,③1<m<4;(2)或.【解析】
(1)①根據“折線距離”的定義直接列式計算;②根據“折線距離”的定義列出方程,求解即可;③根據“折線距離”的定義列出式子,可知其幾何意義是數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3.(2)由題意可知,根據圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3,所以1<m<4(2)設E(x,y),則,如圖,若點E在⊙F上,則.【點睛】本題主要考查坐標與圖形,正確理解新定義及其幾何意義,利用數形結合的思想思考問題是解題關鍵.21、解:(1);(2)存在,P(,);(1)Q點坐標為(0,-)或(0,)或(0,-1)或(0,-1).【解析】
(1)已知點A坐標可確定直線AB的解析式,進一步能求出點B的坐標.點A是拋物線的頂點,那么可以將拋物線的解析式設為頂點式,再代入點B的坐標,依據待定系數法可解.(2)首先由拋物線的解析式求出點C的坐標,在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發現,點P正好在第二象限的角平分線上,聯立直線y=-x與拋物線的解析式,直接求交點坐標即可,同時還要注意點P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點,分類進行討論,找出相關的相似三角形,依據對應線段成比例進行求解即可.【詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標是(1,0).∵A為頂點,∴設拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當∠POB=∠POC時,△POB≌△POC,此時PO平分第二象限,即PO的解析式為y=﹣x.設P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當∠Q1AB=90°時,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當∠Q2BA=90°時,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當∠AQ1B=90°時,作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點坐標為(0,-)或(0,)或(0,﹣1)或(0,﹣1).22、(1)t=秒;(1)t=5﹣(s).【解析】
(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據三角形的面積公式列出方程求解即可.【詳解】解:(1)∵點A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵點P的速度是每秒1個單位,點Q的速度是每秒1個單位,∴AQ=t,AP=10﹣t,①∠APQ是直角時,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角時,△AQP∽△AOB,∴,即,解得t=,綜上所述,t=秒時,△APQ與△AOB相似;(1)如圖,過點P作PC⊥OA于點C,則PC=AP?sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面積=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故當t=5﹣(s)時,△APQ的面積為8cm1.【點睛】本題主要考查了相似三角形的判定與性質、銳角三角函數、三角形的面積以及一元二次方程的應用能力,分類討論是解題的關鍵.23、(1)詳見解析;(2).【解析】
(1)利用基本作圖(作一個角等于已知角和作已知線段的垂直平分線)作出BD和EF;(2)先證明四邊形BEDF為菱形,再利用含30度的直角三角形三邊的關系求出BF和CD,然后利用菱形的面積公式求解.【詳解】(1)如圖,DE、DF為所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD為∠ABC的角平分線,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四邊形BEDF為平行四邊形,而FB=FD,∴四邊形BEDF為菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四邊形BFDE的面積=4×2=8.故答案為:8.【點睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).24、15天【解析】試題分析:首先設規定的工期是x天,則甲工程隊單獨做需(x-1)天,乙工程隊單獨做需(x+6)天,根據題意可得等量關系:乙工程隊干x天的工作量+甲工程隊干4天的工作量=1,根據等量關系列出方程,解方程即可.試題解析:設工程期限為x天.根據題意得,解得:x=15.經檢驗x=15是原分式方程的解.答:工程期限為15天.25、新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【解析】
根據題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進而求出AB的長.【詳解】解:如圖,作CD⊥AB于點D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 以數據為核心利用區塊鏈提高醫療用品供應鏈的透明度
- 企業采購中區塊鏈技術的運用及安全問題探討
- 創新引領深度解讀企業辦公用品采購的區塊鏈化進程
- 信息安全技術守護患者隱私的基石
- 2025年中國雙層牛仔布手套市場調查研究報告
- 衡水二中高一試卷及答案
- 河口四年級的試卷及答案
- 航拍試卷及答案五年級
- 2025年中國全長絲面料數據監測報告
- 共情溝通在改善醫療體驗中的角色
- 這個殺手不太冷解析
- 造口袋技術要求
- 國家開放大學(江西)地域文化(專)任務1-4試題及答案
- QCR 409-2017 鐵路后張法預應力混凝土梁管道壓漿技術條件
- 南師地信培養方案
- 采購工作調研報告(3篇)
- 10KV高壓開關柜操作(培訓課件PPT)
- 希爾國際商務第11版英文教材課件完整版電子教案
- 《學弈》優質課一等獎課件
- 2023年6月大學英語四級考試真題(第1套)(含答案)
- SWITCH塞爾達傳說曠野之息-1.6金手指127項修改使用說明教程
評論
0/150
提交評論