




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省貴陽市開陽縣2023-2024學年中考數學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在中國集郵總公司設計的2017年紀特郵票首日紀念截圖案中,可以看作中心對稱圖形的是()A.千里江山圖B.京津冀協同發展C.內蒙古自治區成立七十周年D.河北雄安新區建立紀念2.如圖,C,B是線段AD上的兩點,若,,則AC與CD的關系為()A. B. C. D.不能確定3.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③4.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.5.如圖所示的幾何體的左視圖是()A. B. C. D.6.下列運算結果是無理數的是()A.3× B. C. D.7.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.128.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數是()A.70° B.60° C.55° D.50°9.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°10.計算﹣2+3的結果是()A.1 B.﹣1 C.﹣5 D.﹣6二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結論:①CE=CF;②線段EF的最小值為;③當AD=2時,EF與半圓相切;④若點F恰好落在BC上,則AD=;⑤當點D從點A運動到點B時,線段EF掃過的面積是.其中正確結論的序號是.12.如圖,在平面直角坐標系中,拋物線y=﹣x2+4x與x軸交于點A,點M是x軸上方拋物線上一點,過點M作MP⊥x軸于點P,以MP為對角線作矩形MNPQ,連結NQ,則對角線NQ的最大值為_________.13.如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.14.如圖,在平面直角坐標系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標的最大值為cm.15.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規律,第n個圖中正方形和等邊三角形的個數之和為______個.16.如圖,拋物線交軸于,兩點,交軸于點,點關于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.17.計算:=________.三、解答題(共7小題,滿分69分)18.(10分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:調查了________名學生;補全條形統計圖;在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.19.(5分)某校數學綜合實踐小組的同學以“綠色出行”為主題,把某小區的居民對共享單車的了解和使用情況進行了問卷調查.在這次調查中,發現有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調查結果制作成統計圖,如下圖所示:本次調查人數共人,使用過共享單車的有人;請將條形統計圖補充完整;如果這個小區大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?20.(8分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)21.(10分)“端午節”是我國的傳統佳節,民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區有8000人,請估計愛吃D粽的人數;(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.22.(10分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發,以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發,以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數關系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數據:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)23.(12分)根據圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應放入大球、小球各多少個?24.(14分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據中心對稱圖形的概念求解.【詳解】解:A選項是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B選項不是中心對稱圖形,故本選項錯誤;C選項為中心對稱圖形,故本選項正確;D選項不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題主要考查了中心對稱圖形的概念:關鍵是找到相關圖形的對稱中心,旋轉180度后與原圖重合.2、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【點睛】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍轉化線段之間的數量關系是十分關鍵的一點.3、A【解析】
解:∵乙出發時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.4、B【解析】試題分析:結合三個視圖發現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.5、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.6、B【解析】
根據二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數;B選項:原式=,故B是無理數;C選項:原式==6,故C不是無理數;D選項:原式==12,故D不是無理數故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.7、B【解析】
首先連接OA、OB,根據圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據⊙O的半徑為6,可得AB=OA=OB=6,再根據三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關鍵.8、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.9、C【解析】
根據四邊形的內角和與直角三角形中兩個銳角關系即可求解.【詳解】解:∵四邊形的內角和為360°,直角三角形中兩個銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點睛】此題主要考查角度的求解,解題的關鍵是熟知四邊形的內角和為360°.10、A【解析】
根據異號兩數相加的法則進行計算即可.【詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點睛】本題主要考查了異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.二、填空題(共7小題,每小題3分,滿分21分)11、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點E與點D關于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結論“CE=CF”正確;②當CD⊥AB時,如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據“點到直線之間,垂線段最短”可得:點D在線段AB上運動時,CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結論“線段EF的最小值為”錯誤;③當AD=2時,連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點E與點D關于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結論“EF與半圓相切”正確;④當點F恰好落在上時,連接FB、AF,如圖4所示,∵點E與點D關于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結論“AD=”錯誤;⑤∵點D與點E關于AC對稱,點D與點F關于BC對稱,∴當點D從點A運動到點B時,點E的運動路徑AM與AB關于AC對稱,點F的運動路徑NB與AB關于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結論“EF掃過的面積為”正確.故答案為①③⑤.考點:1.圓的綜合題;2.等邊三角形的判定與性質;3.切線的判定;4.相似三角形的判定與性質.12、4【解析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當MP最大時,NQ就最大.∵點M是拋物線在軸上方部分圖象上的一點,且MP⊥軸于點P,∴當點M是拋物線的頂點時,MP的值最大.∵,∴拋物線的頂點坐標為(2,4),∴當點M的坐標為(2,4)時,MP最大=4,∴對角線NQ的最大值為4.13、1【解析】分析:連接OC,根據圓周角定理得到∠COD=2∠A,根據切線的性質計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案為:1.點睛:本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.14、【解析】
當AC與⊙O相切于點C時,P點縱坐標的最大值,如圖,直線AC交y軸于點D,連結OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據兩點之間線段最短求出PN+MN的值.15、9n+1.【解析】
∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數之和=9n+1.故答案為9n+1.16、【解析】
根據拋物線解析式求得點D(1,4)、點E(2,3),作點D關于y軸的對稱點D′(﹣1,4)、作點E關于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據此根據勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關于對稱軸的對稱點E的坐標為(2,3),作點D關于y軸的對稱點D′(﹣1,4),作點E關于x軸的對稱點E′(2,﹣3),連結D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點睛】本題主要考查拋物線的性質以及兩點間的距離公式,解題的關鍵是熟練掌握拋物線的性質,利用數形結合得出答案.17、.【解析】
根據異分母分式加減法法則計算即可.【詳解】原式.故答案為:.【點睛】本題考查了分式的加減,關鍵是掌握分式加減的計算法則.三、解答題(共7小題,滿分69分)18、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數除以它所占的百分比可得總共的學生數;(2)用學生的總人數乘以各部分所占的百分比,可得最喜歡足球的人數和其他的人數,即可把條形統計圖補充完整;(3)根據圓心角的度數=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總人數=15÷30%=50(名)故答案為50;(2)足球項目所占的人數=50×18%=9(名),所以其它項目所占人數=50﹣15﹣9﹣16=10(名)補全條形統計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用,概率的計算.讀懂統計圖,從不同的統計圖中得到必要的信息及掌握概率的計算方法是解決問題的關鍵.19、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數20除以對于共享單車不了解的人數所占得百分比即可得本次調查人數;用總人數乘以使用過共享單車人數所占的百分比即可得使用過共享單車的人數;(2)用使用過共享單車的總人數減去0~2,4~6,6~8的人數,即可得2~4的人數,再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數所占的百分比即可得每天的騎行路程在2~4千米的人數.試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人20、不需要改道行駛【解析】
解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應用三角函數求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.21、(1)600(2)見解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次參加抽樣調查的居民有600人.(2分)(2)如圖;…(5分)(3)8000×40%=3200(人).答:該居民區有8000人,估計愛吃D粽的人有3200人.…(7分)(4)如圖;(列表方法略,參照給分).…(8分)P(C粽)==.答:他第二個吃到的恰好是C粽的概率是.…(10分)22、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據此可求出x的值.(2)由于四邊形AHPO形狀不規則,可根據三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據OF的長和∠FOD的余弦值得出.由此可求得y、x的函數關系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),FH=(x+5)過點O作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西運城市運康中學2024-2025學年度八年級下學期物理期中考試卷(含答案)
- 2025保安員考試題庫(含答案)
- 2025年湖北省初中學業水平考試化學模擬試卷(六)(教師版)
- 四川內江威遠龍會中學2024-2025學年高三下學期高考模擬考試生物試題(文史類)試卷含解析
- 河南科技職業大學《腫瘤分子生物學》2023-2024學年第二學期期末試卷
- 景德鎮陶瓷職業技術學院《質量管理與可靠性》2023-2024學年第二學期期末試卷
- 武漢工商學院《科技英語閱讀與翻譯》2023-2024學年第一學期期末試卷
- 山東體育學院《導游業務能力》2023-2024學年第二學期期末試卷
- 河南省重點中學2024-2025學年高三模擬考試(一)英語試題試卷含解析
- 四川幼兒師范高等專科學校《國際貿易函電》2023-2024學年第二學期期末試卷
- 大小便觀察與護理
- 2025年-重慶市安全員-A證考試題庫附答案
- 多式聯運模式在跨境電商中的應用-全面剖析
- 腫瘤患者的血栓預防及護理
- 作風建設方面個人簡短總結
- 胸部常見病變的CT診斷
- 萬向節十字軸工藝卡
- 財務管理專業培養方案調研報告
- 《個人信息保護法》全文學習PPT課件(帶內容)
- 新中大A3財務系操作手冊
- 污水管道施工安全技術交底
評論
0/150
提交評論