




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽亳州利辛縣闞疃金石中學2024屆高考數學倒計時模擬卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A. B. C. D.2.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.3.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件4.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.5.已知集合,,則等于()A. B. C. D.6.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.7.執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.8.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數m的最小值是()A. B.3 C. D.9.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.10.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.11.要得到函數的導函數的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍12.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個二、填空題:本題共4小題,每小題5分,共20分。13.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.14.已知函數.若在區間上恒成立.則實數的取值范圍是__________.15.已知函數為偶函數,則_____.16.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數,.(1)解不等式;(2)若對任意的實數恒成立,求的取值范圍.18.(12分)設數列是等比數列,,已知,(1)求數列的首項和公比;(2)求數列的通項公式.19.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.20.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.21.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.22.(10分)已知函數(),是的導數.(1)當時,令,為的導數.證明:在區間存在唯一的極小值點;(2)已知函數在上單調遞減,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
分子分母同乘,即根據復數的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復數的除法運算,屬于基礎題.2、C【解析】
將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.3、D【解析】
由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.4、D【解析】
設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.5、B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎題型.6、A【解析】
執行程序框圖,逐次計算,根據判斷條件終止循環,即可求解,得到答案.【詳解】由題意,執行上述的程序框圖:第1次循環:滿足判斷條件,;第2次循環:滿足判斷條件,;第3次循環:滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環結構的程序框圖的結果的計算與輸出,其中解答中執行程序框圖,逐次計算,根據判斷條件終止循環是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.7、B【解析】
根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.8、D【解析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數m的取值范圍,即求正實數m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.9、A【解析】
根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.10、D【解析】
說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.11、D【解析】
先求得,再根據三角函數圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復合函數導數的計算,考查誘導公式,考查三角函數圖像變換,屬于基礎題.12、D【解析】
運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數S′,由S′=0得t=1,根據函數的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數求面積的最值問題,意在考查學生的計算能力和應用能力.14、【解析】
首先解不等式,再由在區間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數的綜合問題,屬于基礎題.15、【解析】
根據偶函數的定義列方程,化簡求得的值.【詳解】由于為偶函數,所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據函數的奇偶性求參數,考查運算求解能力,屬于中檔題.16、3【解析】
在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數問題,通過分類討論并根據恒成立問題的解法求解即可.試題解析:整理得解得①②解得③,且無限趨近于4,綜上的取值范圍是18、(1)(2)【解析】
本題主要考查了等比數列的通項公式的求解,數列求和的錯位相減求和是數列求和中的重點與難點,要注意掌握.(1)設等比數列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結合數列的特點,考慮利用錯位相減可求數列的和解:(1)(2),兩式相減:19、(1);(2)【解析】
(1)設,則由題設條件可得,化簡后可得軌跡的方程.(2)設直線,聯立直線方程和拋物線方程后利用韋達定理化簡并求得,結合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設,則圓心的坐標為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設直線,聯立得,設(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數量積.一般地,拋物線中的弦長問題,一般可通過聯立方程組并消元得到關于或的一元二次方程,再把已知等式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為某一個變量的方程.本題屬于中檔題.20、(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,【點睛】本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.21、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結合幾何關系可證得平面,據此證明題中的結論即可;(Ⅱ)建立空間直角坐標系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設滿足題意的點存在,設,由直線與的方向向量得到關于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質可得:,結合三角形中位線的性質可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結合菱形的性質易知,,,以點O為坐標原點,建立如圖所示的空間直角坐標系,則:,設平面的一個法向量為,則:,據此可得平面的一個法向量為,而,設直線與平面所成角為,則.(Ⅲ)由題意可得:,假設滿足題意的點存在,設,,據此可得:,即:,從而點F的坐標為,據此可得:,,結合題意有:,解得:.故點F為中點時滿足題意.【點睛】本題主要考查線面垂直的判定定理與性質定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學生的轉化能力和計算求解能力.22、(1)見解析;(2)【解析】
(1)設,,注意到在上單增,再利用零點存在性定理即可解決;(2)函數在上單調遞減,則在恒成立,即在上恒成立,構造函數,求導討論的最值即可.【詳解】(1)由已知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 禮儀用品企業環境保護責任考核試卷
- 周莊超深基坑施工方案
- 紙張加工中的涂布工藝改進考核試卷
- 了解項目管理考試命題思路試題及答案
- 熱電聯產關鍵技術研究考核試卷
- 2025年【過氧化工藝】考試題及答案
- 海洋能源開發市場前景分析考核試卷
- 環保工程綠色交通設計與規劃考核試卷
- 高一物理綜合試題及答案
- 2023年中國神華煤制油化工有限公司第三批次系統內招聘2人筆試參考題庫附帶答案詳解
- 質量整改通知單(樣板)
- 二子女無財產無債務離婚協議書
- 裝配作業指導書
- 換填承載力計算(自動版)
- 公司董事會會議臺賬
- 2021-2022學年福建省廈門市第一中學高二下學期期中生物試題(原卷版)
- 煤礦安管人員七新題庫及答案
- (完整word版)中小學教育質量綜合評價指標框架(試行)
- HIV-1病毒載量測定及質量保證指南
- 電路原理圖設計評審檢查要素表
- 工控機測試標準
評論
0/150
提交評論