【蘇科版】江蘇省丹陽市重點中學2024年中考數學仿真試卷含解析_第1頁
【蘇科版】江蘇省丹陽市重點中學2024年中考數學仿真試卷含解析_第2頁
【蘇科版】江蘇省丹陽市重點中學2024年中考數學仿真試卷含解析_第3頁
【蘇科版】江蘇省丹陽市重點中學2024年中考數學仿真試卷含解析_第4頁
【蘇科版】江蘇省丹陽市重點中學2024年中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

【蘇科版】江蘇省丹陽市重點中學2024年中考數學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a62.已知A(x1,y1),B(x2,y2)是反比例函數y=kx(k≠0)圖象上的兩個點,當x1<x2<0時,y1>y2A.第一象限B.第二象限C.第三象限D.第四象限3.已知二次函數y=﹣(x﹣h)2+1(為常數),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+4.一組數據1,2,3,3,4,1.若添加一個數據3,則下列統計量中,發生變化的是()A.平均數 B.眾數 C.中位數 D.方差5.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:16.估計介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間7.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×58.在半徑等于5cm的圓內有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°9.下列關于統計與概率的知識說法正確的是()A.武大靖在2018年平昌冬奧會短道速滑500米項目上獲得金牌是必然事件B.檢測100只燈泡的質量情況適宜采用抽樣調查C.了解北京市人均月收入的大致情況,適宜采用全面普查D.甲組數據的方差是0.16,乙組數據的方差是0.24,說明甲組數據的平均數大于乙組數據的平均數10.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.12.若正多邊形的一個內角等于140°,則這個正多邊形的邊數是_______.13.如圖,△ABC中,AB=BD,點D,E分別是AC,BD上的點,且∠ABD=∠DCE,若∠BEC=105°,則∠A的度數是_____.14.有下列各式:①;②;③;④.其中,計算結果為分式的是_____.(填序號)15.當a<0,b>0時.化簡:=_____.16.如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____三、解答題(共8題,共72分)17.(8分)(1)計算:;(2)化簡:.18.(8分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數.19.(8分)計算:|﹣1|+﹣(1﹣)0﹣()﹣1.20.(8分)如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數式表示);(2)若以AD為直徑的圓經過點C.①求拋物線的函數關系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.21.(8分)如圖,是5×5正方形網格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.22.(10分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.23.(12分)某居民小區一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.24.在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點B順時針旋轉角a(0°<a<90°)得到△A1BC;A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數量關系?并證明你的結論.(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據整式的運算法則分別計算可得出結論.【詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點:合并同類項;冪的乘方與積的乘方;單項式乘單項式.2、B【解析】試題分析:當x1<x2<0時,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函數y=kx﹣k的圖象經過第一、三、四象限,所以不經過第二象限,故答案選B.考點:反比例函數圖象上點的坐標特征;一次函數圖象與系數的關系.3、C【解析】

∵當x<h時,y隨x的增大而增大,當x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數的性質和最值,根據二次函數的增減性和最值分兩種情況討論是解題的關鍵.4、D【解析】A.∵原平均數是:(1+2+3+3+4+1)÷6=3;添加一個數據3后的平均數是:(1+2+3+3+4+1+3)÷7=3;∴平均數不發生變化.B.∵原眾數是:3;添加一個數據3后的眾數是:3;∴眾數不發生變化;C.∵原中位數是:3;添加一個數據3后的中位數是:3;∴中位數不發生變化;D.∵原方差是:;添加一個數據3后的方差是:;∴方差發生了變化.故選D.點睛:本題主要考查的是眾數、中位數、方差、平均數的,熟練掌握相關概念和公式是解題的關鍵.5、B【解析】

可證明△DFE∽△BFA,根據相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.6、C【解析】

解:∵,∴,即∴估計在2~3之間故選C.【點睛】本題考查估計無理數的大小.7、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數x的代數式表示,而列出方程,屬于基礎題.8、C【解析】

根據題意畫出相應的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數定義及特殊角的三角函數值求出∠AOD的度數,進而確定出∠AOB的度數,利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數.【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數值,以及銳角三角函數定義,熟練掌握垂徑定理是解本題的關鍵.9、B【解析】

根據事件發生的可能性的大小,可判斷A,根據調查事物的特點,可判斷B;根據調查事物的特點,可判斷C;根據方差的性質,可判斷D.【詳解】解:A、武大靖在2018年平昌冬奧會短道速滑500米項目上可能獲得獲得金牌,也可能不獲得金牌,是隨機事件,故A說法不正確;B、燈泡的調查具有破壞性,只能適合抽樣調查,故檢測100只燈泡的質量情況適宜采用抽樣調查,故B符合題意;C、了解北京市人均月收入的大致情況,調查范圍廣適合抽樣調查,故C說法錯誤;D、甲組數據的方差是0.16,乙組數據的方差是0.24,說明甲組數據的波動比乙組數據的波動小,不能說明平均數大于乙組數據的平均數,故D說法錯誤;故選B.【點睛】本題考查隨機事件及方差,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.方差越小波動越小.10、C【解析】

根據三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質,先證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.1【解析】

求出EC,根據菱形的性質得出AD∥BC,得出相似三角形,根據相似三角形的性質得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質,解題關鍵是根據菱形的性質證明△DEF∽△CEB,然后根據相似三角形的性質可求解.12、1【解析】試題分析:此題主要考查了多邊形的外角與內角,做此類題目,首先求出正多邊形的外角度數,再利用外角和定理求出求邊數.首先根據求出外角度數,再利用外角和定理求出邊數.∵正多邊形的一個內角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內角與外角.13、85°【解析】

設∠A=∠BDA=x,∠ABD=∠ECD=y,構建方程組即可解決問題.【詳解】解:∵BA=BD,∴∠A=∠BDA,設∠A=∠BDA=x,∠ABD=∠ECD=y,則有,解得x=85°,故答案為85°.【點睛】本題考查等腰三角形的性質,三角形的外角的性質,三角形的內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.14、②④【解析】

根據分式的定義,將每個式子計算后,即可求解.【詳解】=1不是分式,=,=3不是分式,=故選②④.【點睛】本題考查分式的判斷,解題的關鍵是清楚分式的定義.15、【解析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.16、【解析】

連接OA,OC,根據∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【點睛】本題考查了圓周角定理以及銳角三角函數,根據題意作出常用輔助線是解題關鍵.三、解答題(共8題,共72分)17、(1)4+;(2).【解析】

(1)根據冪的乘方、零指數冪、特殊角的三角函數值和絕對值可以解答本題;(3)根據分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點睛】本題考查分式的混合運算、實數的運算、零指數冪、特殊角的三角函數值和絕對值,解答本題的關鍵是明確它們各自的計算方法.18、(1);(2)30°【解析】

(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;

(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質、線段垂直平分線的性質、相似三角形的判定和性質、勾股定理、等邊三角形的判定和性質.解題的關鍵是連接OE,構造直角三角形.19、1【解析】試題分析:先分別計算絕對值,算術平方根,零指數冪和負指數冪,然后相加即可.試題解析:解:|﹣1|+﹣(1﹣)0﹣()﹣1=1+3﹣1﹣2=1.點睛:本題考查了實數的計算,熟悉計算的順序和相關的法則是解決此題的關鍵.20、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經過點C,即點C在以AD為直徑的圓的圓周上,依據圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據勾股定理列等式即可求出a的值.②將△OBE繞平面內某一點旋轉180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據①的函數解析式設出M點的坐標,然后根據題干條件:BF=2MF作為等量關系進行解答即可.③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內某一點旋轉180°得到△PMN,∴PM∥x軸,且PM=OB=1;設M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數解析式的確定、旋轉圖形的性質、圓周角定理以及直線和圓的位置關系等重要知識點;后兩個小題較難,最后一題中,通過構建等腰直角三角形找出QD和⊙Q半徑間的數量關系是解題題目的關鍵.21、(1)見解析;(2)DF=【解析】

(1)直接利用等腰三角形的定義結合勾股定理得出答案;(2)利用直角三角的定義結合勾股定理得出符合題意的答案.【詳解】(1)如圖(1)所示:△ABE,即為所求;(2)如圖(2)所示:△CDF即為所求,DF=.【點睛】此題主要考查了等腰三角形的定義以及三角形面積求法,正確應用網格分析是解題關鍵.22、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】

(1)先根據點A坐標及對稱軸得出點B坐標,再利用待定系數法求解可得;(2)利用(1)得到的解析式,可設點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據S△POC=2S△BOC列出關于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數的關系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論