上海市部分區2024年數學八年級下冊期末教學質量檢測模擬試題含解析_第1頁
上海市部分區2024年數學八年級下冊期末教學質量檢測模擬試題含解析_第2頁
上海市部分區2024年數學八年級下冊期末教學質量檢測模擬試題含解析_第3頁
上海市部分區2024年數學八年級下冊期末教學質量檢測模擬試題含解析_第4頁
上海市部分區2024年數學八年級下冊期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市部分區2024年數學八年級下冊期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.五箱梨的質量(單位:千克)分別為:18,20,21,18,19,則這五箱梨質量的中位數和眾數分是()A.20和18 B.20和19 C.18和18 D.19和182.若二次根式有意義,則的取值范圍是()A. B. C. D.3.若,則的取值范圍是()A. B. C. D.4.下列說法:(1)所有的等腰三角形都相似;(2)所有的等腰直角三角形都相似;(3)有一個角相等的兩個等腰三角形相似(4)頂角相等的兩個等腰三角形相似.其中正確的有()A.個 B.個 C.個 D.個5.在、、、、3中,最簡二次根式的個數有()A.4 B.3 C.2 D.16.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形7.如圖,在平行四邊形ABCD中,,,AC,BD相交于點O,,交AD于點E,則的周長為A.20cm B.18cm C.16cm D.10cm8.在一次數學課上,張老師出示了一個題目:“如圖,?ABCD的對角線相交于點O,過點O作EF垂直于BD交AB,CD分別于點F,E,連接DF,BE,請根據上述條件,寫出一個正確結論.”其中四位同學寫出的結論如下:小青:OE=OF;小何:四邊形DFBE是正方形;小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=∠CAF,這四位同學寫出的結論中不正確的是()A.小青 B.小何 C.小夏 D.小雨9.下列說法:(1)的立方根是2,(2)的立方根是±5,(3)負數沒有平方根,(4)一個數的平方根有兩個,它們互為相反數.其中錯誤的有()A.4個 B.3個 C.2個 D.1個10.在一次統考中,從甲、乙兩所中學初二學生中各抽取50名學生進行成績分析,甲校的平均分和方差分別是82分和245分,乙校的平均分和方差分別是82分和190分,根據抽樣可以粗略估計成績較為整齊的學校是()A.甲校 B.乙校 C.兩校一樣整齊 D.不好確定哪校更整齊11.一個裝有進水管和出水管的空容器,從某時刻開始內只進水不出水,容器內存水,在隨后的內既進水又出水,容器內存水,接著關閉進水管直到容器內的水放完.若每分鐘進水和出水量是兩個常數,容器內的水量(單位:)與時間(單位:)之間的函數關系的圖象大致的是()A. B.C. D.12.如果點P(3﹣m,1)在第二象限,那么關于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1 B.x<﹣1 C.x>1 D.x<1二、填空題(每題4分,共24分)13.如圖,四邊形ABCD是菱形,對角線AC和BD相交于點O,AC=4cm,BD=8cm,則這個菱形的面積是_____cm1.14.如圖,,的垂直平分線交于點,若,則下列結論正確是______(填序號)①②是的平分線③是等腰三角形④的周長.15.一名主持人站在舞臺的黃金分割點處最自然得體,如果舞臺AB長為20m,這名主持人現在站在A處(如圖所示),則它應至少再走_____m才最理想.(可保留根號).16.如果一組數據的方差為,那么這組數據的標準差是________.17.平面直角坐標系中,A、O兩點的坐標分別為(2,0),(0,0),點P在正比例函數y=x(x>0)圖象上運動,則滿足△PAO為等腰三角形的P點的坐標為_____.18.如圖,是的角平分線,交于,交于.且交于,則________度.三、解答題(共78分)19.(8分)如圖,點在同一直線上,,,.求證:.20.(8分)已知正比例函數和反比例函數的圖象都經過點A(3,3).(1)求正比例函數和反比例函數的解析式;(2)把直線OA向下平移后得到直線l,與反比例函數的圖象交于點B(6,m),求m的值和直線l的解析式;(3)在(2)中的直線l與x軸、y軸分別交于C、D,求四邊形OABC的面積.21.(8分)如圖,在?ABCD中,E、F為對角線BD上的兩點,且BE=DF.求證:∠BAE=∠DCF.22.(10分)計算:(1);(2).23.(10分)如圖,一次函數的圖象與反比例函數在第一象限的圖象交于和B兩點,與x軸交于點C.(1)求反比例函數的解析式;(2)若點P在x軸上,且的面積為5,求點P的坐標.24.(10分)我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態三角形.例如:某三角形三邊長分別是5,6和8,因為,所以這個三角形是常態三角形.(1)若三邊長分別是2,和4,則此三角形常態三角形(填“是”或“不是”;(2)如圖,中,,,點為的中點,連接,若是常態三角形,求的面積.25.(12分)某鄉鎮企業生產部有技術工人15人,生產部為了合理制定產品的每月生產定額,統計了15人某月的加工零件個數:每人加工件數540450300240210120人數112632(1)寫出這15人該月加工零件數的平均數、中位數和眾數.(2)若以本次統計所得的月加工零件數的平均數定為每位工人每月的生產定額,你認為這個定額是否合理,為什么?26.在平面直角坐標系中,BC∥OA,BC=3,OA=6,AB=3.(1)直接寫出點B的坐標;(2)已知D、E(2,4)分別為線段OC、OB上的點,OD=5,直線DE交x軸于點F,求直線DE的解析式;(3)在(2)的條件下,點M是直線DE上的一點,在x軸上方是否存在另一個點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【解析】

找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.【詳解】解:從小到大排列此數據為:1、1、19、20、21,數據1出現了三次最多,所以1為眾數;19處在第3位是中位數.∴本題這組數據的中位數是19,眾數是1.故選:D.【點睛】本題屬于基礎題,考查了確定一組數據的中位數和眾數的能力.要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.2、C【解析】試題分析:由題意得,,解得.故選C.考點:二次根式有意義的條件.3、D【解析】

根據分式的概念可知使分式有意義的條件為a≠0,根據二次根式被開方數大于等于0可知,使該等式成立的條件為a>0且1-a≥0,故a的取值范圍是0<a≤1.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考査二次根式的概念和分式的概念,需注意在任何時候都要考慮分母不為0,這也是本題最容易出錯的地方.4、B【解析】

利用“兩角對應相等的三角形是相似三角形”直接逐一進行判斷即可【詳解】(1)所有的等腰三角形,不能判斷對應的角相等.所以錯誤;(2)所有的等腰直角三角形的三個角分別為:90°,45°,45°,故利用有兩角對應相等的三角形相似,即可判定所有的等邊三角形都相似,所以正確;(3)中可能是以底角和一頂角相等,所以錯誤;(4)頂角相等且為等腰三角形,即底角也相等,是相似三角形,所以正確;故(2)(4)正確,選擇B【點睛】本題考查相似三角形的判定,熟悉基礎定理是解題關鍵5、C【解析】

最簡二次根式就是被開方數不含分母,并且不含有開方開的盡的因數或因式的二次根式,根據以上條件即可判斷.【詳解】、、不是最簡二次根式.、3是最簡二次根式.綜上可得最簡二次根式的個數有2個.故選C.【點睛】本題考查最簡二次根式的定義,一定要掌握最簡二次根式必須滿足兩個條件,被開方數不含分母且被開方數不含能開得盡方的因數或因式.6、D【解析】

根據菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四邊形的判定方法分別分析即可得出答案.【詳解】解:A、根據對角線互相垂直的平行四邊形可判定為菱形,再有對角線且相等可判定為正方形,此選項正確,不符合題意;B、根據菱形的判定方法可得對角線互相垂直平分的四邊形是菱形正確,此選項正確,不符合題意;C、對角線互相平分的四邊形是平行四邊形是判斷平行四邊形的重要方法之一,此選項正確,不符合題意;D、根據矩形的判定方法:對角線互相平分且相等的四邊形是矩形,因此只有對角線相等的四邊形不能判定是矩形,此選項錯誤,符合題意;選:D.【點睛】此題主要考查了菱形,矩形,正方形,平行四邊形的判定,關鍵是需要同學們準確把握矩形、菱形正方形以及平行四邊形的判定定理之間的區別與聯系.7、A【解析】

根據平行四邊形對角線互相平分可知點O是BD中點,繼而可判斷出EO是BD的中垂線,得出BE=ED,從而可得出△ABE的周長=AB+AD,即可得出答案.【詳解】∵四邊形ABCD是平行四邊形,AC、BD交于點O,∴BO=DO,由∵EO⊥BD,∴EO是線段BD的中垂線,∴BE=ED,故可得△ABE的周長=AB+AD=20cm,故選A.【點睛】本題考查了平行四邊形的性質以及中垂線的判定及性質等,正確得出BE=ED是解題關鍵.8、B【解析】

根據平行四邊形的性質可得OA=OC,CD∥AB,從而得∠ACE=∠CAF,可判斷出小雨的結論正確,證明△EOC≌△FOA,可得OE=OF,判斷出小青的結論正確,由△EOC≌△FOA繼而可得出S四邊形AFED=S四邊形FBCE,判斷出小夏的結論正確,由△EOC≌△FOA可得EC=AF,繼而可得出四邊形DFBE是平行四邊形,從而可判斷出四邊形DFBE是菱形,無法判斷是正方形,判斷出故小何的結論錯誤即可.【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,CD∥AB,∴∠ACE=∠CAF,(故小雨的結論正確),在△EOC和FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的結論正確),∴S△EOC=S△AOF,∴S四邊形AFED=S△ADC=S平行四邊形ABCD,∴S四邊形AFED=S四邊形FBCE,(故小夏的結論正確),∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四邊形DFBE是平行四邊形,∵OD=OB,EO⊥DB,∴ED=EB,∴四邊形DFBE是菱形,無法判斷是正方形,(故小何的結論錯誤),故選B.【點睛】本題考查了平行四邊形的性質、菱形的判定、全等三角形的判定與性質、正方形的判定等,綜合性較強,熟練掌握各相關性質與定理是解題的關鍵.9、B【解析】

①根據立方根的性質即可判定;②根據立方根的性質即可判定;③根據平方根的定義即可判定;④根據平方根的定義即可判定【詳解】(1)的立方根是2,2的立方根是,故①錯誤;(2)=-5,-5的立方根是-,故②錯誤;(3)負數沒有平方根,原來的說法正確;(4)一個正數的平方根有兩個,它們互為相反數,故④錯誤.錯誤的有3個.故選:B.【點睛】此題考查立方根的性質,平方根的定義,解題關鍵在于掌握其性質10、B【解析】

根據方差的意義可作出判斷.方差是用來衡量一組數據波動大小的量,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.【詳解】∵甲校和乙校的平均數是相等的,甲校的方差大于乙校的方差,∴成績較為整齊的學校是乙校.故選B.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.11、A【解析】

根據只進水不出水、既進水又出水、只出水不進水這三個時間段逐一進行分析即可確定答案.【詳解】∵從某時刻開始內只進水不出水,容器內存水;∴此時容器內的水量隨時間的增加而增加,∵隨后的內既進水又出水,容器內存水,∴此時水量繼續增加,只是增速放緩,∵接著關閉進水管直到容器內的水放完,∴水量逐漸減少為0,綜上,A選項符合,故選A.【點睛】本題考查了函數的圖象,弄清題意,正確進行分析是解題的關鍵.12、B【解析】根據第二象限內點的坐標特征得3-m<0,解得m>3,不等式(2-m)x+2>m化簡為(2-m)x>m-2,由m>3,得2-m<0,所以x<=-1.故選B.二、填空題(每題4分,共24分)13、2.【解析】試題分析:根據菱形的面積等于對角線乘積的一半解答.試題解析:∵AC=4cm,BD=8cm,∴菱形的面積=×4×8=2cm1.考點:菱形的性質.14、①②③④【解析】

由△ABC中,∠A=36°,AB=AC,根據等腰三角形的性質與三角形內角和定理,即可求得∠C的度數;又由線段垂直平分線的性質,易證得△ABD是等腰三角形,繼而可求得∠ABD與∠DBC的度數,證得BD是∠ABC的平分線,然后由∠DBC=36°,∠C=72°,證得∠BDC=72°,易證得△DBC是等腰三角形,個等量代換即可證得④△BCD的周長=AB+BC.【詳解】∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C==72°,故①正確;∵DM是AB的垂直平分線,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=36°,∴∠ABD=∠DBC,∴BD是∠ABC的平分線;故②正確;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-36°-72°=72°,∴∠BDC=∠C,∴BC=BD,∴△DBC是等腰三角形;故③正確;∵BD=AD,∴△BCD的周長=BD+BC+CD=AC+BC=AB+BC,故④正確;故答案為:①②③④.【點睛】本題考查的是線段垂直平分線的性質及等腰三角形的判定與性質,熟知垂直平分線上任意一點,到線段兩端點的距離相等是解答此題的關鍵.15、(30﹣10)【解析】

AB的黃金分割點有兩個,一種情況是AC<BC,一種是AC>BC,當AC<BC時走的路程最小,由此根據黃金分割的意義進行求解即可.【詳解】如圖所示:則,即(20?AC):20=(?1):2,解得AC=30?10.∴他應至少再走30?10米才最理想,故答案為:30?10.【點睛】本題考查黃金分割的知識,熟練掌握黃金分割比例即可解答.16、【解析】

求出9的算術平方根即可.【詳解】∵S2=9,S==3,?故答案為3【點睛】本題考查的是標準差的計算,計算標準差需要先知道方差,標準差即方差的算術平方根.17、(1,1)或(,)或(1,1)【解析】

分OP=AP、OP=OA、AO=AP三種情況考慮:①當OP1=AP1時,△AOP1為等腰直角三角形,根據等腰直角三角形的性質結合點A的坐標可得出點P1的坐標;②當OP1=OA時,過點P1作P1B⊥x軸,則△OBP1為等腰直角三角形,根據等腰直角三角形的性質結合點A的坐標可得出點P1的坐標;③當AO=AP3時,△OAP3為等腰直角三角形,根據等腰直角三角形的性質結合點A的坐標可得出點P3的坐標.綜上即可得出結論【詳解】∵點A的坐標為(1,0),∴OA=1.分三種情況考慮,如圖所示.①當OP1=AP1時,∵∠AOP1=45°,∴△AOP1為等腰直角三角形.又∵OA=1,∴點P1的坐標為(1,1);②當OP1=OA時,過點P1作P1B⊥x軸,則△OBP1為等腰直角三角形.∵OP1=OA=1,∴OB=BP1=,∴點P1的坐標為(,);③當AO=AP3時,△OAP3為等腰直角三角形.∵OA=1,∴AP3=OA=1,∴點P3的坐標為(1,1).綜上所述:點P的坐標為(1,1)或(,)或(1,1).故答案為:(1,1)或(,)或(1,1).【點睛】本題考查了一次函數圖象上點的坐標特征、等腰三角形的性質以及等腰直角三角形的性質,分OP=AP、OP=OA、AO=AP三種情況求出點P的坐標是解題的關鍵.18、【解析】

先根據平行四邊形的判定定理得出四邊形AEDF為平行四邊形,再根據平行線的性質及角平分線的性質得出∠1=∠3,故可得出?AEDF為菱形,根據菱形的性質即可得出.【詳解】如圖所示:∵DE∥AC,DF∥AB,

∴四邊形AEDF為平行四邊形,

∴OA=OD,OE=OF,∠2=∠3,

∵AD是△ABC的角平分線,

∵∠1=∠2,

∴∠1=∠3,

∴AE=DE.

∴?AEDF為菱形.

∴AD⊥EF,即∠AOF=1°.

故答案是:1.【點睛】考查的是菱形的判定與性質,根據題意判斷出四邊形AEDF是菱形是解答此題的關鍵.三、解答題(共78分)19、詳見解析【解析】

先證出,由證明Rt△ABC≌Rt△DFE,得出對應邊相等即可.【詳解】解:證明:,∴△ABC和△DEF都是直角三角形,,即,在Rt△ABC和Rt△DFE中,,∴Rt△ABC≌Rt△DFE(HL),∴.【點睛】本題考查了全等三角形的判定與性質;熟練掌握直角三角形全等的判定方法是解決問題的關鍵.20、(1)正比例函數的解析式為y=x,反比例函數的解析式為y=;(2)直線l的解析式為y=x;(3)S四邊形OABC=.【解析】

(1)利用待定系數法,由正比例函數和反比例函數的圖象都經過點A(3,3),即可求得解析式;

(2)由點B在反比例函數圖象上,即可求得m的值;又由此一次函數是正比例函數平移得到的,可知一次函數與反比例函數的比例系數相同,代入點B的坐標即可求得解析式;

(3)構造直角梯形AEFD,則通過求解△ABE、△BDF與直角梯形ADFE的面積即可求得△ABD的面積.【詳解】(1)設正比例函數的解析式為y=ax,反比例函數的解析式為y=,

∵正比例函數和反比例函數的圖象都經過點A(3,3),

∴3=3a,3=,

∴a=1,b=9,

∴正比例函數的解析式為y=x,反比例函數的解析式為y=;(2)∵點B在反比例函數上,

∴m==,

∴B點的坐標為(6,),

∵直線BD是直線OA平移后所得的直線,

∴可設直線BD的解析式為y=x+c,

∴=6+c,

∴c=,

∴直線l的解析式為y=x;

(3)過點A作AE∥x軸,交直線l于點E,連接AC.

∵直線l的解析式為y=x,A(3,3),

∴點E的坐標為(,3),點C的坐標為(,0).

∴AE=?3=,OC=,

∴S四邊形OABC=S△OAC+S△ACE?S△ABE=××3+××3?××=.【點睛】本題考查反比例函數與一次函數的交點問題,解題的關鍵是掌握待定系數法求解析式和反比例函數與一次函數的交點問題.21、證明見解析【解析】

要證明∠BAE=∠DCF,可以通過證明△ABE≌△CDF,由已知條件BE=DF,∠ABE=∠CDF,AB=CD得來.【詳解】解:∵四邊形ABCD是平行四邊形∴AB∥CD,AB=CD∴∠ABE=∠CDF∵BE=DF∴△ABEC≌△CDF∴∠BAE=∠DCF【點睛】本題考查全等三角形的判定和性質,該題較為簡單,是常考題,主要考查學生對全等三角形的性質和判定以及平行四邊形性質的應用.22、(1)0;(2)【解析】

(1)根據二次根式的乘法公式:和合并同類二次根式法則計算即可;(2)二次根式的乘法公式:、除法公式和合并同類二次根式法則計算即可.【詳解】解:(1)==0(2)===【點睛】此題考查的是二次根式的加減運算,掌握二次根式的乘法公式:、除法公式和合并同類二次根式法則是解決此題的關鍵.23、(1)(2)P的坐標為或【解析】

(1)利用點A在上求a,進而代入反比例函數求k即可;(2)設,求得C點的坐標,則,然后根據三角形面積公式列出方程,解方程即可.【詳解】(1)把點代入,得,∴把代入反比例函數,∴;∴反比例函數的表達式為;(2)∵一次函數的圖象與x軸交于點C,∴,設,∴,∴,∴或,∴P的坐標為或.【點睛】本題考查了反比例函數與一次函數的交點問題,用待定系數法求出反比例函數的解析式等知識點,能用待定系數法求出反比例函數的解析式是解此題的關鍵.24、(1)是;(2)或.【解析】

(1)直接利用常態三角形的定義判斷即可;(2)直接利用直角三角形的性質結合常態三角形的定義得出的長,進而求出答案.【詳解】解:(1),三邊長分別是2,和4,則此三角形是常態三角形.故答案為:是;(2)中,,,點為的中點,是常態三角形,當,時,解得:,則,故,則的面積為:.當,時,解得:,則,故,則的面積為:.故的面積為或.【點睛】此題主要考查了勾股定理、直角三角形斜邊的中線等于斜邊的一半以及新定義,正確應用勾股定理以及直角三角形的性質是解題關鍵.25、(1)平均數:260件;中位數:240件;眾數:240件(2)不合理,定額為240較為合理【解析】

分析:(1)平均數=加工零件總數÷總人數,中位數是將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.本題中應是第7個數.眾數又是指一組數據中出現次數最多的數據.240出現6次.(2)應根據中位數和眾數綜合考慮.詳解:(1)平均數:;中位數:240件;眾數:240件.(2)不合理,因為表中數據顯示,每月能完成260件的人數一共是4人,還有11人不能達到此定額,盡管260是平均數,但不利于調動多數員工的積極性,因為24

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論