




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市埇橋區教育集團2023-2024學年中考數學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一次函數y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減小;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確2.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm23.一個多邊形的內角和比它的外角和的倍少180°,那么這個多邊形的邊數是()A.7 B.8 C.9 D.104.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°5.下列方程中有實數解的是()A.x4+16=0 B.x2﹣x+1=0C. D.6.下列運算正確的是()A.(a2)4=a6 B.a2?a3=a6 C. D.7.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.8.-的絕對值是()A.-4 B. C.4 D.0.49.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=10.在“大家跳起來”的鄉村學校舞蹈比賽中,某校10名學生參賽成績統計如圖所示.對于這10名學生的參賽成績,下列說法中錯誤的是()A.眾數是90 B.中位數是90 C.平均數是90 D.極差是15二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.12.若是關于的完全平方式,則__________.13.已知x(x+1)=x+1,則x=________.14.若式子有意義,則x的取值范圍是______.15.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.16.計算:(+)=_____.三、解答題(共8題,共72分)17.(8分)閱讀材料:小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結論,找一組正整數,填空:+=(+)2;(3)若,且均為正整數,求的值.18.(8分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數據:sin64°≈0.9,tan64°≈2).19.(8分)為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據以上規則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.20.(8分)如圖,一次函數y=ax﹣1的圖象與反比例函數的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.21.(8分)某學校要了解學生上學交通情況,選取七年級全體學生進行調查,根據調查結果,畫出扇形統計圖(如圖),圖中“公交車”對應的扇形圓心角為60°,“自行車”對應的扇形圓心角為120°,已知七年級乘公交車上學的人數為50人.(1)七年級學生中,騎自行車和乘公交車上學的學生人數哪個更多?多多少人?(2)如果全校有學生2400人,學校準備的600個自行車停車位是否足夠?22.(10分)先化簡,再求值:,其中x是從-1、0、1、2中選取一個合適的數.23.(12分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.24.已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,FC=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據k的正負與函數增減變化的關系,結合函數圖象逐個選項分析即可解答.【詳解】解:一次函數y2=2x+3(﹣1<x<2)的函數值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減?。还盛僬_;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數中兩條直線相交或平行的綜合問題,需要數形結合,結合一次函數的性質逐條分析解答,難度較大.2、A【解析】
根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.3、A【解析】
設這個正多邊形的邊數是n,就得到方程,從而求出邊數,即可求出答案.【詳解】設這個多邊形的邊數為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內角與外角的知識點,此題要結合多邊形的內角和與外角和,根據題目中的等量關系,構建方程求解即可.4、D【解析】
直接利用三角板的特點,結合平行線的性質得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點睛】此題主要考查了平行線的性質,根據平行線的性質得出∠BDE的度數是解題關鍵.5、C【解析】
A、B是一元二次方程可以根據其判別式判斷其根的情況;C是無理方程,容易看出沒有實數根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.6、C【解析】
根據冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.【點睛】本題考查了冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.7、C【解析】
結合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.8、B【解析】
直接用絕對值的意義求解.【詳解】?的絕對值是.故選B.【點睛】此題是絕對值題,掌握絕對值的意義是解本題的關鍵.9、D【解析】
由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據線段的垂直平分線的性質可得結論,故B正確,不符合題意;
根據相似三角形的判定即可求解,故C正確,不符合題意;
由△BAE∽△ADC,得到CD與AD的大小關系,根據正切函數可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質,解直角三角形,掌握相似三角形的判定方法是解題的關鍵.10、C【解析】
由統計圖中提供的數據,根據眾數、中位數、平均數、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現了5次,出現的次數最多,∴眾數是90;∵共有10個數,∴中位數是第5、6個數的平均數,∴中位數是(90+90)÷2=90;∵平均數是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
根據“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質.12、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.13、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.14、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.15、【解析】試題解析:∵四邊形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【點睛】此題考查了矩形的性質、等邊三角形的判定與性質、線段垂直平分線的性質、勾股定理;熟練掌握矩形的性質,證明三角形是等邊三角形是解決問題的關鍵.16、1.【解析】
去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.【點睛】本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.三、解答題(共8題,共72分)17、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解析】
(1)∵,∴,∴a=m2+3n2,b=2mn.故答案為m2+3n2,2mn.(2)設m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案為1,2,1,2(答案不唯一).(3)由題意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n為正整數,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.18、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米.【解析】試題分析:(1)根據在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,高為DE,可以求得DE的高度;(2)根據銳角三角函數和題目中的數據可以求得大樓AB的高度.試題解析:(1)∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,∴,設DE=5x米,則EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)過點D作AB的垂線,垂足為H,設DH的長為x,由題意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根據勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大樓AB的高度是34米.19、(1);(2)不公平,理由見解析.【解析】
(1)畫樹狀圖列出所有等可能結果數,找到摸出一個黃球和一個白球的結果數,根據概率公式可得答案;(2)結合(1)種樹狀圖根據概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結果,其中一次性摸出一個黃球和一個白球的有11種結果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關鍵是根據題意畫出樹狀圖.20、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數解析式求出a的值,代入反比例解析式求出k的值,聯立一次函數與反比例函數解析式求出B的坐標;(2)由A與B交點橫坐標,根據函數圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯立一次函數與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數綜合題,涉及的知識有:待定系數法確定函數解析式,一次函數與反比例函數的交點問題,坐標與圖形性質,勾股定理,銳角三角函數定義,相似三角形的判定與性質,利用了數形結合的思想,熟練運用數形結合思想是解題的關鍵.21、(1)騎自行車的人數多,多50人;(2)學校準備的600個自行車停車位不足夠,理由見解析【解析】分析:(1)根據乘公交車的人數除以乘公交車的人數所占的比例,可得調查的樣本容量,根據樣本容量乘以自行車所占的百分比,可得騎自行車的人數,根據有理數的減法,可得答案;(2)根據學??側藬党艘则T自行車所占的百分比,可得答案.詳解:(1)乘公交車所占的百分比=,調查的樣本容量50÷=300人,騎自行車的人數300×=100人,騎自行車的人數多,多100﹣50=50人;(2)全校騎自行車的人數2400×=800人,800>600,故學校準備的600個自行車停車位不足夠.點睛:本題考查了扇形統計圖,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.扇形統計圖直接反映部分占總體的百分比大小.22、.【解析】
先把分子分母因式分解,約分后進行通分化為同分母,再進行同分母的加法運算,然后再約分得到原式=,由于x不能取±1,2,所以把x=0代入計算即可.【詳解】,====,當x=0時,原式=.23、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據平移的性質得出平移后的圖從而得到點的坐標;(2)根據位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理24、(1),45°;(2)不成立,理由見解析;(3).【解析】
(1)由正方形的性質,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025智能制造合作合同
- 2025短期合同工聘用合同范本
- 幼兒園常見傳染病預防
- 傳染病防治工作培訓會
- 脊柱圍手術期護理
- 2025年植物遺傳綜合試題
- 審計處工作總結模版
- 僵人綜合征的臨床護理
- 船廠班組年終總結模版
- 電力設備行業深度報告:歐洲電車趨勢已起-從歐洲車企2025Q1財報看電動化趨勢151mb
- 2025湖北水發集團園招聘40人筆試參考題庫附帶答案詳解
- 2025年武漢數學四調試題及答案
- 2024年全國高中數學聯賽北京賽區預賽一試試題(解析版)
- 緊急填倉換刀及破除孤石技術
- 南瑞科技220kv斷路器輔助保護nsr-322an型保護裝置調試手冊
- 滾筒冷渣機技術協議
- 氨基轉移酶檢測臨床意義和評價注意點
- 中債收益率曲線和中債估值編制方法及使用說明
- 國家開放大學《行政組織學》章節測試參考答案
- 什么是標準工時如何得到標準工時
- 牛津譯林版英語八年級下冊8B——單詞默寫(表格版)
評論
0/150
提交評論