河北省石家莊市新華區2024屆中考沖刺卷數學試題含解析_第1頁
河北省石家莊市新華區2024屆中考沖刺卷數學試題含解析_第2頁
河北省石家莊市新華區2024屆中考沖刺卷數學試題含解析_第3頁
河北省石家莊市新華區2024屆中考沖刺卷數學試題含解析_第4頁
河北省石家莊市新華區2024屆中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩26頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省石家莊市新華區2024屆中考沖刺卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)2.關于的方程有實數根,則整數的最大值是()A.6 B.7 C.8 D.93.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣34.某工廠第二季度的產值比第一季度的產值增長了x%,第三季度的產值又比第二季度的產值增長了x%,則第三季度的產值比第一季度的產值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%5.一組數據:3,2,5,3,7,5,x,它們的眾數為5,則這組數據的中位數是()A.2 B.3 C.5 D.76.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,27.如圖是二次函數y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④8.小強是一位密碼編譯愛好者,在他的密碼手冊中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對應下列六個字:昌、愛、我、宜、游、美,現將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結果呈現的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌9.小明解方程的過程如下,他的解答過程中從第()步開始出現錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數化為1,得x=2⑤A.① B.② C.③ D.④10.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數是()A.2 B.3 C.4 D.511.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.1212.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.14.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結果保留π).15.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.16.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.17.如圖,點A在反比例函數y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.18.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在數學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據學習函數的經驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數據保留一位小數)(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;(4)結合畫出的函數圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.20.(6分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數y=kx+b與反比例函數y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.(1)求m的值及一次函數解析式;(2)P是線段AB上的一點,連接PC、PD,若△PCA和△PDB面積相等,求點P坐標.21.(6分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設BD為xcm,CE為ycm.小聰根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行了探究.下面是小聰的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關數值保留一位小數建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;結合畫出的函數圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.22.(8分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.23.(8分)如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.(1)求證:PM∥AD;(2)若∠BAP=2∠M,求證:PA是⊙O的切線;(3)若AD=6,tan∠M=,求⊙O的直徑.24.(10分)如圖,△ABC的頂點坐標分別為A(1,3)、B(4,1)、C(1,1).在圖中以點O為位似中心在原點的另一側畫出△ABC放大1倍后得到的△A1B1C1,并寫出A1的坐標;請在圖中畫出△ABC繞點O逆時針旋轉90°后得到的△A1B1C1.25.(10分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)26.(12分)閱讀與應用:閱讀1:a、b為實數,且a>0,b>0,因為,所以,從而(當a=b時取等號).閱讀2:函數(常數m>0,x>0),由閱讀1結論可知:,所以當即時,函數的最小值為.閱讀理解上述內容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當x=__________時,周長的最小值為__________.問題2:已知函數y1=x+1(x>-1)與函數y2=x2+2x+17(x>-1),當x=__________時,的最小值為__________.問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數的平方成正比,比例系數為0.1.當學校學生人數為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數)27.(12分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規作圖)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.2、C【解析】

方程有實數根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數根,則△≥0,求出a的取值范圍,取最大整數即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;

當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整數,即a=1.故選C.3、B【解析】

把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.4、D【解析】設第一季度的原產值為a,則第二季度的產值為,第三季度的產值為,則則第三季度的產值比第一季度的產值增長了故選D.5、C【解析】分析:眾數是指一組數據中出現次數最多的那個數據,一組數據可以有多個眾數,也可以沒有眾數;中位數是指將數據按大小順序排列起來形成一個數列,居于數列中間位置的那個數據.根據定義即可求出答案.詳解:∵眾數為5,∴x=5,∴這組數據為:2,3,3,5,5,5,7,∴中位數為5,故選C.點睛:本題主要考查的是眾數和中位數的定義,屬于基礎題型.理解他們的定義是解題的關鍵.6、D【解析】

根據邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.7、C【解析】試題分析:根據題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據函數的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數,離對稱軸越近則函數值越大,則點睛:本題主要考查的就是二次函數的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現a+b+c,則看x=1時y的值;如果出現a-b+c,則看x=-1時y的值;如果出現4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數,離對稱軸越遠則函數值越大,對于開口向下的函數,離對稱軸越近則函數值越大.8、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因為x﹣y,x+y,a+b,a﹣b四個代數式分別對應愛、我,宜,昌,所以結果呈現的密碼信息可能是“愛我宜昌”,故答案選C.考點:因式分解.9、A【解析】

根據解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.10、D【解析】

①先根據角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;②先根據三角形中位線定理得:OE=AB=,OE∥AB,根據勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據平行四邊形的面積公式可作判斷;④根據三角形中位線定理可作判斷;⑤根據同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質、等腰三角形的性質、直角三角形30度角的性質、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質,證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.11、D【解析】

根據正方形的性質可得出AB∥CD,進而可得出△ABF∽△GDF,根據相似三角形的性質可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質、正方形的性質,利用相似三角形的性質求出AF的長度是解題的關鍵.12、C【解析】試題分析:已知m∥n,根據平行線的性質可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.14、4﹣π【解析】

由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.15、【解析】

把(1,4)代入兩函數表達式可得:a+b=4,再根據“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.16、【解析】

因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.17、1.【解析】

根據題意作出合適的輔助線,然后根據正方形的性質和反比例函數的性質,相似三角形的判定和性質、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設AP=a,則BP=2a,OA=3a,設點A的坐標為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數圖象點的坐標特征、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.18、①②③【解析】

依據∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據△DFP∽△BPH,可得,再根據BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據CP=CD,即可得出PD2=PH?CD;根據三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質、相似三角形的判定與性質、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質定理與判定定理是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數據為3.5故答案為:3.5(3)由數據得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數圖象探究題,解得關鍵是按照題意畫圖測量,并將條件轉化成函數圖象研究.20、(1)m=2;y=x+;(2)P點坐標是(﹣,).【解析】

(1)利用待定系數法求一次函數和反比例函數的解析式;

(2)設點P的坐標為根據面積公式和已知條件列式可求得的值,并根據條件取舍,得出點P的坐標.【詳解】解:(1)∵反比例函數的圖象過點∴∵點B(﹣1,m)也在該反比例函數的圖象上,∴﹣1?m=﹣2,∴m=2;設一次函數的解析式為y=kx+b,由y=kx+b的圖象過點A,B(﹣1,2),則解得:∴一次函數的解析式為(2)連接PC、PD,如圖,設∵△PCA和△PDB面積相等,∴解得:∴P點坐標是【點睛】本題考查待定系數法求反比例函數以及一次函數解析式,反比例函數與一次函數的交點問題,熟練掌握待定系數法是解題的關鍵.21、(1)1.1;(2)見解析;(3).【解析】

(1)(2)需要認真按題目要求測量,描點作圖;(3)線段BD是線段CE長的2倍的條件可以轉化為一次函數圖象,通過數形結合解決問題.【詳解】根據題意測量約故應填:根據題意畫圖:當線段BD是線段CE長的2倍時,得到圖象,該圖象與中圖象的交點即為所求情況,測量得BD長約.故答案為(1)1.1;(2)見解析;(3)1.7.【點睛】本題考查函數作圖和函數圖象實際意義的理解,在中,考查學生由數量關系得到函數關系的轉化思想.22、(1)見解析;(2)見解析;(3)見解析,.【解析】

(1)直接利用網格結合勾股定理得出符合題意的答案;(2)直接利用網格結合平行四邊形的性質以及勾股定理得出符合題意的答案;(3)連接CE,根據勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點睛】本題主要考查了等腰三角形的性質、平行四邊形的性質、勾股定理,正確應用勾股定理是解題的關鍵.23、(1)證明見解析;(2)證明見解析;(3)1;【解析】

(1)根據平行線的判定求出即可;(2)連接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根據切線的判定得出即可;(3)設BC=x,CM=2x,根據相似三角形的性質和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根據三角形的中位線性質得出0.71x=AD=3,求出x即可.【詳解】(1)∵BD是直徑,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)連接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半徑,∴PA是⊙O的切線;(3)連接BN,則∠MBN=90°.∵tan∠M=,∴=,設BC=x,CM=2x,∵MN是⊙O直徑,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.1x,∴OM=MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中點,C是AB的中點,AD=6,∴OC=0.71x=AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半徑為1.【點睛】本題考查了圓周角定理,切線的性質和判定,相似三角形的性質和判定等知識點,能靈活運用知識點進行推理是解此題的關鍵,此題有一定的難度.24、(1)A(﹣1,﹣6);(1)見解析【解析】試題分析:(1)把每個坐標做大1倍,并去相反數.(1)橫縱坐標對調,并且把橫坐標取相反數.試題解析:解:(1)如圖,△A1B1C1為所作,A(﹣1,﹣6);(1)如圖,△A1B1C1為所作.25、7.6m.【解析】

利用CD及正切函數的定義求得BC,AC長,把這兩條線段相減即為AB長【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點睛】此題主要考查了解直角三角形的應用,正確應用銳角三角函數關系是解題關鍵.26、問題1:28問題2:38問題3:設學校學生人數為x人,生均投入為y元,依題意得:,因為x>0,所以,當即x=800時,y取最小值2.答:當學校學生人數為800人時,該校每天生均投入最低,最低費用是2元.【解析】試題分析:問題1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論