湖南省祁陽縣2023-2024學年九年級數學第一學期期末復習檢測試題含解析_第1頁
湖南省祁陽縣2023-2024學年九年級數學第一學期期末復習檢測試題含解析_第2頁
湖南省祁陽縣2023-2024學年九年級數學第一學期期末復習檢測試題含解析_第3頁
湖南省祁陽縣2023-2024學年九年級數學第一學期期末復習檢測試題含解析_第4頁
湖南省祁陽縣2023-2024學年九年級數學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省祁陽縣2023-2024學年九年級數學第一學期期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知實數m,n滿足條件m2﹣7m+2=0,n2﹣7n+2=0,則+的值是()A. B. C.或2 D.或22.如圖,一張扇形紙片OAB,∠AOB=120°,OA=6,將這張扇形紙片折疊,使點A與點O重合,折痕為CD,則圖中未重疊部分(即陰影部分)的面積為()A.9 B.12π﹣9 C. D.6π﹣3.如圖,一次函數y1=x+b與一次函數y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<14.如圖,是由一些相同的小正方形圍成的立方體圖形的三視圖,則構成這種幾何體的小正方形的個數是()A.4 B.6 C.9 D.125.如圖2,在平面直角坐標系中,點的坐標為(1,4)、(5,4)、(1、),則外接圓的圓心坐標是A.(2,3) B.(3,2) C.(1,3) D.(3,1)6.下列方程中,是一元二次方程的是()A. B.C. D.7.如圖,已知矩形的面積是,它的對角線與雙曲線圖象交于點,且,則值是()A. B. C. D.8.如圖,AB,BC是⊙O的兩條弦,AO⊥BC,垂足為D,若⊙O的直徑為5,BC=4,則AB的長為()A.2 B.2 C.4 D.59.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數是()A. B. C. D.10.下列式子中表示是的反比例函數的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在中若,,則__________,__________.12.在一個不透明的塑料袋中裝有紅色白色球共個.除顏色外其他都相同,小明通過多次摸球試驗后發現,其中摸到紅色球的頻率穩定在左右,則口袋中紅色球可能有________個.13.已知△ABC與△DEF相似,且△ABC與△DEF的相似比為2:3,若△DEF的面積為36,則△ABC的面積等于________.14.如圖,在由邊長為1的小正方形組成的網格中.點A,B,C,D都在這些小正方形的格點上,AB、CD相交于點E,則sin∠AEC的值為_____.15.三角形兩邊長分別為3和6,第三邊的長是方程x2﹣13x+36=0的根,則該三角形的周長為_____.16.如圖,如果將半徑為的圓形紙片剪去一個圓心角為的扇形,用剩下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的底面圓半徑為______.17.如圖,拋物線與軸的負半軸交于點,與軸交于點,連接,點分別是直線與拋物線上的點,若點圍成的四邊形是平行四邊形,則點的坐標為__________.18.如圖,已知等邊△ABC的邊長為4,P是AB邊上的一個動點,連接CP,過點P作∠EPC=60°,交AC于點E,以PE為邊作等邊△EPD,頂點D在線段PC上,O是△EPD的外心,當點P從點A運動到點B的過程中,點O也隨之運動,則點O經過的路徑長為_____.三、解答題(共66分)19.(10分)如圖,是線段上--動點,以為直徑作半圓,過點作交半圓于點,連接.已知,設兩點間的距離為,的面積為.(當點與點或點重合時,的值為)請根據學習函數的經驗,對函數隨自變量的變化而變化的規律進行探究.(注:本題所有數值均保留一位小數)通過畫圖、測量、計算,得到了與的幾組值,如下表:補全表格中的數值:;;.根據表中數值,繼續描出中剩余的三個點,畫出該函數的圖象并寫出這個函數的一條性質;結合函數圖象,直接寫出當的面積等于時,的長度約為____.20.(6分)如圖,在正方形ABCD中,,點E為對角線AC上一動點(點E不與點A、C重合),連接DE,過點E作,交BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.(1)求AC的長;(2)求證矩形DEFG是正方形;(3)探究:的值是否為定值?若是,請求出這個定值;若不是,請說明理由.21.(6分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一個根,求a的值.22.(8分)如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點,CD⊥AF.AC是∠DAB的平分線,(1)求證:直線CD是⊙O的切線.(2)求證:△FEC是等腰三角形23.(8分)初中生對待學習的態度一直是教育工作者關注的問題之一.為此某市教育局對該市部分學校的八年級學生對待學習的態度進行了一次抽樣調查(把學習態度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統計圖(不完整).請根據圖中提供的信息,解答下列問題:(1)此次抽樣調查中,共調查了名學生;(2)將圖①補充完整;(3)求出圖②中C級所占的圓心角的度數;(4)根據抽樣調查結果,請你估計該市近20000名初中生中大約有多少名學生學習態度達標(達標包括A級和B級)?24.(8分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.25.(10分)如圖,二次函數的圖象經過點與.求a,b的值;點C是該二次函數圖象上A,B兩點之間的一動點,橫坐標為,寫出四邊形OACB的面積S關于點C的橫坐標x的函數表達式,并求S的最大值.26.(10分)如圖,是的直徑,是弦,是弧的中點,過點作垂直于直線垂足為,交的延長線于點.求證:是的切線;若,求的半徑.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】①m≠n時,由題意可得m、n為方程x2﹣7x+2=0的兩個實數根,利用韋達定理得出m+n、mn的值,將要求的式子轉化為關于m+n、mn的形式,整體代入求值即可;②m=n,直接代入所求式子計算即可.【詳解】①m≠n時,由題意得:m、n為方程x2﹣7x+2=0的兩個實數根,∴m+n=7,mn=2,+====;②m=n時,+=2.故選D.【點睛】本題主要考查一元二次方程根與系數的關系,分析出m、n是方程的兩個根以及分類討論是解題的關鍵.2、A【分析】根據陰影部分的面積=S扇形BDO﹣S弓形OD計算即可.【詳解】由折疊可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD為等邊三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴CD=3,∴S弓形AD=S扇形ADO﹣S△ADO6×36π﹣9,∴S弓形OD=6π﹣9,陰影部分的面積=S扇形BDO﹣S弓形OD(6π﹣9)=9.故選:A.【點睛】本題考查了扇形面積與等邊三角形的性質,熟練運用扇形公式是解答本題的關鍵.3、C【解析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數與一元一次不等式.4、D【分析】根據三視圖,得出立體圖形,從而得出小正方形的個數.【詳解】根據三視圖,可得立體圖形如下,我們用俯視圖添加數字的形式表示,數字表示該圖形俯視圖下有幾個小正方形則共有:1+1+1+2+2+2+1+1+1=12故選:D【點睛】本題考查三視圖,解題關鍵是在腦海中構建出立體圖形,建議可以如本題,通過在俯視圖上標數字的形式表示立體圖形幫助分析.5、D【解析】根據垂徑定理的推論“弦的垂直平分線必過圓心”,作兩條弦的垂直平分線,交點即為圓心.解答:解:根據垂徑定理的推論,則作弦AB、AC的垂直平分線,交點O1即為圓心,且坐標是(3,1).故選D.6、B【解析】根據一元二次方程的定義進行判斷即可.【詳解】A.屬于多項式,錯誤;B.屬于一元二次方程,正確;C.未知數項的最高次數是2,但不屬于整式方程,錯誤;D.屬于整式方程,未知數項的最高次數是3,錯誤.故答案為:B.【點睛】本題考查了一元二次方程的性質以及定義,掌握一元二次方程的定義是解題的關鍵.7、D【分析】過點D作DE∥AB交AO于點E,通過平行線分線段成比例求出的長度,從而確定點D的坐標,代入到解析式中得到k的值,最后利用矩形的面積即可得出答案.【詳解】過點D作DE∥AB交AO于點E∵DE∥AB∴∵∴∴∴∵點D在上∴∵∴故選D【點睛】本題主要考查平行線分線段成比例及反比例函數,掌握平行線分線段成比例是解題的關鍵.8、A【分析】連接BO,根據垂徑定理得出BD,在△BOD中利用勾股定理解出OD,從而得出AD,在△ABD中利用勾股定理解出AB即可.【詳解】連接OB,∵AO⊥BC,AO過O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故選:A.【點睛】本題考查圓的垂徑定理及勾股定理的應用,關鍵在于熟練掌握相關的基礎性質.9、D【詳解】由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.10、D【解析】根據反比例函數的定義逐項分析即可.【詳解】A.是一次函數,故不符合題意;B.二次函數,故不符合題意;C.不是反比例函數,故不符合題意;D.是反比例函數,符合題意;故選D.【點睛】本題考查了反比例函數的定義,一般地,形如(k為常數,k≠0)的函數叫做反比例函數.二、填空題(每小題3分,共24分)11、40°100°【分析】根據等邊對等角可得,根據三角形的內角和定理可得的度數.【詳解】解:∵,∴,∴,故答案為:40°,100°.【點睛】本題考查等邊對等角及三角形的內角和定理,掌握等腰三角形的性質是解題的關鍵.12、1【分析】設有紅球有x個,利用頻率約等于概率進行計算即可.【詳解】設紅球有x個,根據題意得:=20%,解得:x=1,即紅色球的個數為1個,故答案為:1.【點睛】本題考查了由頻率估計概率的知識,解題的關鍵是了解大量重復實驗中事件發生的頻率等于事件發生的概率.13、16【分析】利用相似三角形面積比等于相似比的平方求解即可.【詳解】解:∵ABC與DEF相似,且ΔABC與ΔDEF的相似比為2:3,∴,∵ΔDEF的面積為36,∴∴ΔABC的面積等于16,故答案為16.【點睛】本題考查了相似三角形的性質,熟記相似三角形的面積比等于相似比的平方是解決本題的關鍵.14、【分析】通過作垂線構造直角三角形,由網格的特點可得Rt△ABD是等腰直角三角形,進而可得Rt△ACF是等腰直角三角形,求出CF,再根據△ACE∽△BDE的相似比為1:3,根據勾股定理求出CD的長,從而求出CE,最后根據銳角三角函數的意義求出結果即可.【詳解】過點C作CF⊥AE,垂足為F,在Rt△ACD中,CD=,由網格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC?sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案為:.【點睛】考查銳角三角函數的意義、直角三角形的邊角關系,作垂線構造直角三角形是解決問題常用的方法,借助網格,利用網格中隱含的邊角關系是解決問題的關鍵.15、13【分析】利用因式分解法解方程,得到,,再利用三角形的三邊關系進行判斷,然后計算三角形的周長即可.【詳解】解:∵,∴,∴,,∵,∴不符合題意,舍去;∴三角形的周長為:;故答案為:13.【點睛】本題考查了解一元二次方程,以及三角形的三邊關系的應用,解題的關鍵是正確求出第三邊的長度,以及掌握三角形的三邊關系.16、cm【分析】設這個圓錐的底面圓半徑為rcm,根據圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長和弧長公式得到,然后解方程即可.【詳解】解:設這個圓錐的底面圓半徑為rcm,

根據題意得解得:,即這個圓錐的底面圓半徑為cm故答案為:cm【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.17、或或【分析】根據二次函數與x軸的負半軸交于點,與軸交于點.直接令x=0和y=0求出A,B的坐標.再根據平行四邊形的性質分情況求出點E的坐標.【詳解】由拋物線的表達式求得點的坐標分別為.由題意知當為平行四邊形的邊時,,且,∴線段可由線段平移得到.∵點在直線上,①當點的對應點為時,如圖,需先將向左平移1個單位長度,此時點的對應點的橫坐標為,將代入,得,∴.②當點A的對應點為時,同理,先將向右平移2個單位長度,可得點的對應點的橫坐標為2,將代入得,∴當為平行四邊形的對角線時,可知的中點坐標為,∵在直線上,∴根據對稱性可知的橫坐標為,將代入得,∴.綜上所述,點的坐標為或或.【點睛】本題是二次函數的綜合題,主要考查了特殊點的坐標的確定,平行四邊形的性質,解本題的關鍵是分情況解決問題的思想.18、【分析】根據等邊三角形的外心性質,根據特殊角的三角函數即可求解.【詳解】解:如圖,作BG⊥AC、CF⊥AB于點G、F,交于點I,則點I是等邊三角形ABC的外心,∵等邊三角形ABC的邊長為4,∴AF=BF=2∠IAF=30°∴AI=∵點P是AB邊上的一個動點,O是等邊三角形△EPD的外心,∴當點P從點A運動到點B的過程中,點O也隨之運動,點O的經過的路徑長是AI的長,∴點O的經過的路徑長是.故答案為:.【點睛】本題考查等邊三角形的外心性質,關鍵在于熟悉性質,結合圖形計算.三、解答題(共66分)19、(1)3.1,9.3,7.3;(2)見解析;(3)或.【分析】D(1)如圖1,當x=1.5時,點C在C處,x=2.0時,點C在C1處,此時,D'C'=DC,則,同理可求b、c;(2)依據表格數據描點即可;(3)從圖象可以得出答案.【詳解】解:如圖當x=1.5時,點C在C處,x=2.0時,點C在C1處∴D'C'=DC∴同理可得:b=9.3,c=7.3∴(允許合理的誤差存在)如圖由函數圖像可知,當時,隨增大而增大,當時,隨增大而減小;當時,的最大值為.由函數圖像可知,或【點睛】本題考查的是二次函數綜合應用,確定未知點數據、再描點、準確畫出函數圖像是解答本題的關鍵.20、(1)2;(2)見解析;(3)是,定值為8【分析】(1)運用勾股定理直接計算即可;(2)過作于點,過作于點,即可得到,然后判斷,得到,則有即可;(3)同(2)的方法證出得到,得出即可.【詳解】解:(1),∴AC的長為2;(2)如圖所示,過作于點,過作于點,正方形,,,,且,四邊形為正方形,四邊形是矩形,,,,又,在和中,,,,矩形為正方形,(3)的值為定值,理由如下:矩形為正方形,,,四邊形是正方形,,,,在和中,,,,,是定值.【點睛】此題是四邊形綜合題,主要考查了正方形的性質,矩形的性質與判定,三角形的全等的性質和判定,勾股定理的綜合運用,解本題的關鍵是作出輔助線,構造三角形全等,利用全等三角形的對應邊相等得出結論。21、a=﹣2【分析】根據一元二次方程的解的定義將x=1代入方程即可求出答案.【詳解】解:將x=1代入(a﹣2)x2+(a2﹣3)x﹣a+1=0,得(a﹣2)+(a2﹣3)﹣a+1=0,∴a2﹣4=0,∴a=±2,由于a﹣2≠0,故a=﹣2.【點睛】本題考查一元二次方程的解,解題的關鍵是熟練運用一元二次方程的解的定義,本題屬于基礎題型.22、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先判斷出∠FAC=∠ACO,進而得出AF∥CO,即可得出結論;(2)先用等腰三角形的三線合一得出AF=AB.再用同角的補角相等得出∠FEC=∠B即可得出結論.試題解析:(1)連接OC,則∠CAO=∠ACO,又∠FAC=∠CAO∴∠FAC=∠ACO,∴AF∥CO,而CD⊥AF,∴CO⊥CD,即直線CD是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠ACB=90°又∠FAC=∠CAO∴AF=AB(三線合一),∴∠F=∠B,∵四邊形EABC是⊙O的內接四邊形,∵∠FEC+∠AEC=180°,∠B+∠AEC=180°∴∠FEC=∠B∴∠F=∠FEC,即EC=FC所以△FEC是等腰三角形.23、(1)200;(2)詳見解析;(3);(4)大約有17000名【分析】(1)通過對比條形統計圖和扇形統計圖可知:學習態度層級為A級的有50人,占部分八年級學生的25%,即可求得總人數;(2)由(1)可知:C級人數為:200-120-50=30人,將圖1補充完整即可;(3)各個扇形的圓心角的度數=360°×該部分占總體的百分比,所以可以先求出:360°×(1-25%-60%)=54°;(4)從扇形統計圖可知,達標人數占得百分比為:25%+60%=85%,再估計該市近20000名初中生中達標的學習態度就很容易了.【詳解】(1)50÷25%=200;(2)(人).如圖,(3)C所占圓心角度數.(4).∴估計該市初中生中大約有17000名學生學習態度達標.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大?。?4、(1)見解析;(2)1.【分析】根據角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據平行四邊形的性質可知AB=CD=5,AD∥BC,再根據角平分線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論