




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省文山州富寧縣一中2024屆高考數學全真模擬密押卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.把函數的圖象向右平移個單位長度,得到函數的圖象,若函數是偶函數,則實數的最小值是()A. B. C. D.2.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.3.已知實數滿足不等式組,則的最小值為()A. B. C. D.4.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.5.在中,,,,若,則實數()A. B. C. D.6.已知函數且的圖象恒過定點,則函數圖象以點為對稱中心的充要條件是()A. B.C. D.7.設全集,集合,,則集合()A. B. C. D.8.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數,則()A., B.,C., D.,9.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.10.函數的圖像大致為()A. B.C. D.11.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.12.如圖是二次函數的部分圖象,則函數的零點所在的區間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某地區教育主管部門為了對該地區模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內的學生共有____人.14.已知數列滿足,且,則______.15.滿足線性的約束條件的目標函數的最大值為________16.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.18.(12分)已知正項數列的前項和.(1)若數列為等比數列,求數列的公比的值;(2)設正項數列的前項和為,若,且.①求數列的通項公式;②求證:.19.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數的取值范圍;(2)求證:.20.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.21.(12分)已知函數.(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.22.(10分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先求出的解析式,再求出的解析式,根據三角函數圖象的對稱性可求實數滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數解析式為,故.令,,解得,.因為為偶函數,故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.【點睛】本題考查三角函數的圖象變換以及三角函數的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數圖象的對稱軸,則有,本題屬于中檔題.2、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.3、B【解析】
作出約束條件的可行域,在可行域內求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當直線經過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規劃問題,解題的關鍵是作出可行域、理解目標函數的意義,屬于基礎題.4、B【解析】
建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.5、D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.6、A【解析】
由題可得出的坐標為,再利用點對稱的性質,即可求出和.【詳解】根據題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數函數過定點問題和函數對稱性的應用,屬于基礎題.7、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.8、C【解析】
根據古典概型概率計算公式,計算出概率并求得數學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數學期望的計算,屬于中檔題.9、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題10、A【解析】
根據排除,,利用極限思想進行排除即可.【詳解】解:函數的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數圖象的識別和判斷,利用函數值的符號以及極限思想是解決本題的關鍵,屬于基礎題.11、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數形結合思想易得.12、B【解析】
根據二次函數圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區間端點函數值正負,即可求出結論.【詳解】∵,結合函數的圖象可知,二次函數的對稱軸為,,,∵,所以在上單調遞增.又因為,所以函數的零點所在的區間是.故選:B.【點睛】本題考查二次函數的圖象及函數的零點,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00514、【解析】
數列滿足知,數列以3為公比的等比數列,再由已知結合等比數列的性質求得的值即可.【詳解】,數列是以3為公比的等比數列,又,,.故答案為:.【點睛】本題考查了等比數列定義,考查了對數的運算性質,考查了等比數列的通項公式,是中檔題.15、1【解析】
作出不等式組表示的平面區域,將直線進行平移,利用的幾何意義,可求出目標函數的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當直線經過點時,截距最小,此時取得最大值。由,解得,代入直線,得。【點睛】本題主要考查簡單的線性規劃問題的解法——平移法。16、【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環節,一畫,二證,三求.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由已知條件和正弦定理進行邊角互化得,再根據余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎題.18、(1);(2)①;②詳見解析.【解析】
(1)依題意可表示,,相減得,由等比數列通項公式轉化為首項與公比,解得答案,并由其都是正項數列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關系,由等差數列的通項公式即可得答案;②由已知關系,表示并相減即可表示遞推關系,顯然當時,成立,當,時,表示,由分組求和與正項數列性質放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因為,所以,且,解得.(2)①因為,所以,兩式相減,得,即.因為,所以,即.而當時,,可得,故,所以對任意的正整數都成立,所以數列是等差數列,公差為1,首項為1,所以數列的通項公式為.②因為,所以,兩式相減,得,即,所以對任意的正整數,都有.令,而當時,顯然成立,所以當,時,,所以,即,所以,得證.【點睛】本題考查由前n項和關系求等比數列公比,求等差數列通項公式,還考查了由分組求和表示數列和并由正項數列放縮證明不等式,屬于難題.19、(1);(2)見解析【解析】
(1)利用導數研究的單調性,分析函數性質,數形結合,即得解;(2)構造函數,可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數,,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數與導數綜合,考查了學生數形結合,綜合分析,轉化劃歸,邏輯推理,數學運算的能力,屬于較難題.20、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設,則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,所以,由,則,.由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設,則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質、圓的軌跡方程、直線與橢圓的位置關系中定值問題,考查了學生的計算能力,屬于中檔題.21、(1)(2)【解析】
(1)代入可得對分類討論即可得不等式的解集;(2)根據不等式在上恒成立去絕對值化簡可得再去絕對值即可得關于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當時,不等式可化為,①當時,不等式為,解得;②當時,不等式為,無解;③當時,不等式為,解得,綜上,原不等式的解集為.(2)因為的解集包含于,則不等式可化為,即.解得,由題意知,解得,所以實數a的取值范圍是.【點睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應用,含參數不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鎮江塑膠跑道施工方案
- 2025標準版城鎮住宅購房合同
- 精密設備地面施工方案
- 2025至2030年中國觸摸屏軟性線路板數據監測研究報告
- 2025至2030年中國耐腐蝕塑料離心泵數據監測研究報告
- 荊州拖拉管施工方案企業
- 2025至2030年中國電視機生產線數據監測研究報告
- 2025至2030年中國毛滌針織斜紋布數據監測研究報告
- 特種作業安全培訓
- 設定里程碑的中小學教師資格考試試題及答案
- 《新媒體運營》課件(完整版)
- 專利檢索ppt課件(PPT 54頁)
- 建筑立面十八式,你用過幾個?
- 三只小豬的真實故事
- (高清正版)T-CAGHP 031—2018 地質災害危險性評估及咨詢評估預算標準(試行)
- 第九章 放射線對人體影響
- 屋面防水翻新改造工程施工方案(全面完整版)
- 教案(餐巾折花)
- 有限公司章程(AB股架構).docx
- 北京市中小學生天文知識競賽復習題庫
- GJB300797靜電標準doc
評論
0/150
提交評論