濱海新區2023-2024學年高考全國統考預測密卷數學試卷含解析_第1頁
濱海新區2023-2024學年高考全國統考預測密卷數學試卷含解析_第2頁
濱海新區2023-2024學年高考全國統考預測密卷數學試卷含解析_第3頁
濱海新區2023-2024學年高考全國統考預測密卷數學試卷含解析_第4頁
濱海新區2023-2024學年高考全國統考預測密卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

濱海新區2023-2024學年高考全國統考預測密卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.2.設,則A. B. C. D.3.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.4.已知函數.若存在實數,且,使得,則實數a的取值范圍為()A. B. C. D.5.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.6.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關7.在原點附近的部分圖象大概是()A. B.C. D.8.若,,,則()A. B.C. D.9.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.10.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.11.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.12.下列與函數定義域和單調性都相同的函數是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設命題:,,則:__________.14.一個空間幾何體的三視圖及部分數據如圖所示,則這個幾何體的體積是___________15.若點在直線上,則的值等于______________.16.函數的定義域是____________.(寫成區間的形式)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.18.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數的取值范圍.19.(12分)已知函數,.(1)當時,討論函數的零點個數;(2)若在上單調遞增,且求c的最大值.20.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.21.(12分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.22.(10分)已知函數,且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.2、C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.3、A【解析】

根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.4、D【解析】

首先對函數求導,利用導數的符號分析函數的單調性和函數的極值,根據題意,列出參數所滿足的不等關系,求得結果.【詳解】,令,得,.其單調性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關根據函數值的關系求參數的取值范圍的問題,涉及到的知識點有利用導數研究函數的單調性與極值,畫出圖象數形結合,屬于較難題目.5、D【解析】

根據X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數的性質求出其最大值為,進而得出結論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結合了概率?二次函數等相關知識,需要學生具備一定的計算能力,屬于中檔題.6、D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.7、A【解析】

分析函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數的定義域為,定義域關于原點對稱,,則函數為奇函數,排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數解析式選擇函數圖象,一般要分析函數的定義域、奇偶性、單調性、零點以及函數值符號,考查分析問題和解決問題的能力,屬于中等題.8、C【解析】

利用指數函數和對數函數的單調性比較、、三個數與和的大小關系,進而可得出、、三個數的大小關系.【詳解】對數函數為上的增函數,則,即;指數函數為上的增函數,則;指數函數為上的減函數,則.綜上所述,.故選:C.【點睛】本題考查指數冪與對數式的大小比較,一般利用指數函數和對數函數的單調性結合中間值法來比較,考查推理能力,屬于基礎題.9、C【解析】

利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程。【詳解】設,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。10、D【解析】

連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.11、A【解析】

設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.12、C【解析】

分析函數的定義域和單調性,然后對選項逐一分析函數的定義域、單調性,由此確定正確選項.【詳解】函數的定義域為,在上為減函數.A選項,的定義域為,在上為增函數,不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數,符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數的定義域和單調性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】

存在符號改任意符號,結論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結論:對于一般命題的否定只需直接否定結論即可.14、【解析】

先還原幾何體,再根據柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎題15、【解析】

根據題意可得,再由,即可得到結論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.【點睛】本題考查誘導公式和同角的三角函數的關系,考查計算能力,屬于基礎題.16、【解析】

要使函數有意義,需滿足,即,解得,故函數的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】

(1)先根據空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18、(Ⅰ)或.(Ⅱ)【解析】

(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數單調性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調遞減,在單調遞增,當時,同樣得到在單調遞減,在單調遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.19、(1)見解析(2)2【解析】

(1)將代入可得,令,則,設,則轉化問題為與的交點問題,利用導函數判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數可得,則,即,再設,利用導函數求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調遞增,在上單調遞減,則的最大值為,且當時,;當時,,由此作出函數的大致圖象,如圖所示.由圖可知,當時,直線和函數的圖象有兩個交點,即函數有兩個零點;當或,即或時,直線和函數的圖象有一個交點,即函數有一個零點;當即時,直線與函數的象沒有交點,即函數無零點.(2)因為在上單調遞增,即在上恒成立,設,則,①若,則,則在上單調遞減,顯然,在上不恒成立;②若,則,在上單調遞減,當時,,故,單調遞減,不符合題意;③若,當時,,單調遞減,當時,,單調遞增,所以,由,得,設,則,當時,,單調遞減;當時,,單調遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導函數研究函數的零點問題,考查利用導函數求最值,考查運算能力與分類討論思想.20、(1);(2)【解析】

(1)直接利用轉換公式,把參數方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數方程與極坐標方程的互化,三角函數的值域求解等知識,考查了學生的運算求解能力.21、(1)曲線:,直線的直角坐標方程;(2)1.【解析】試題分析:(1)先根據三角函數平方關系消參數得曲線化為普通方程,再根據將直線的極坐標方程化為直角坐標方程;(2)根據題意設直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論