2024屆唐山市重點中學數(shù)學高一下期末達標檢測試題含解析_第1頁
2024屆唐山市重點中學數(shù)學高一下期末達標檢測試題含解析_第2頁
2024屆唐山市重點中學數(shù)學高一下期末達標檢測試題含解析_第3頁
2024屆唐山市重點中學數(shù)學高一下期末達標檢測試題含解析_第4頁
2024屆唐山市重點中學數(shù)學高一下期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆唐山市重點中學數(shù)學高一下期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列四組中的函數(shù),表示同一個函數(shù)的是()A., B.,C., D.,2.若,則下列結論成立的是()A. B.C.的最小值為2 D.3.函數(shù)的圖象是()A. B. C. D.4.若函數(shù)的圖象上所有點縱坐標不變,橫坐標伸長到原來的2倍,再向左平行移動個單位長度得函數(shù)的圖象,則函數(shù)在區(qū)間內的所有零點之和為()A. B. C. D.5.已知,,,則,,的大小關系為()A. B. C. D.6.若向量,,則點B的坐標為()A. B. C. D.7.已知三棱錐,若平面,,,,則三棱錐外接球的表面積為()A. B. C. D.8.在三棱柱中,平面,,,,E,F(xiàn)分別是,上的點,則三棱錐的體積為()A.6 B.12 C.24 D.369.的值為A. B. C. D.10.若,則下列不等式成立的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.從分別寫有1,2,3,4,5的五張卡片中,任取兩張,這兩張卡片上的數(shù)字之差的絕對值等于1的概率為________.12.若正四棱錐的側棱長為,側面與底面所成的角是45°,則該正四棱錐的體積是________.13.已知圓C:,點M的坐標為(2,4),過點N(4,0)作直線交圓C于A,B兩點,則的最小值為________14.向量滿足:,與的夾角為,則=_____________;15.已知滿足約束條件,則的最大值為__________.16.已知向量,若,則_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知關于的函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若對任意的恒成立,求實數(shù)的最大值.18.數(shù)列中,且滿足.(1)求數(shù)列的通項公式;(2)設,求;⑶設,是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由.19.已知,求的值.20.(1)已知圓經過和兩點,若圓心在直線上,求圓的方程;(2)求過點、和的圓的方程.21.在等差數(shù)列中,(Ⅰ)求通項;(Ⅱ)求此數(shù)列前30項的絕對值的和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

分別判斷兩個函數(shù)的定義域和對應法則是否相同即可.【題目詳解】.的定義域為,,兩個函數(shù)的定義域相同,對應法則相同,所以,表示同一個函數(shù)..的定義域為,,兩個函數(shù)的定義域相同,對應法則不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域為,兩個函數(shù)的定義域不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域,兩個函數(shù)的定義域不相同,對應法則相同,所以,不能表示同一個函數(shù).故選.【題目點撥】本題主要考查判斷兩個函數(shù)是否為同一函數(shù),判斷的依據(jù)主要是判斷兩個函數(shù)的定義域和對應法則是否相同即可.2、D【解題分析】

由,根據(jù)不等式乘方性質可判斷A不成立;由指數(shù)函數(shù)單調性可判斷B不成立;由基本不等式可判斷C不成立,D成立.【題目詳解】對于A,若,則有,故A不成立;對于B,根據(jù)指數(shù)函數(shù)單調性,函數(shù)單調遞減,,故B不成立;對于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;則D能成立.故選:D.【題目點撥】本題考查基本不等式、不等式的基本性質,考查不等式性質的應用,屬于基礎題.3、D【解題分析】

求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【題目詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【題目點撥】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎題.4、C【解題分析】

先由誘導公式以及兩角和差公式得到函數(shù)表達式,再根據(jù)函數(shù)伸縮平移得到,將函數(shù)零點問題轉化為圖像交點問題,進而得到結果.【題目詳解】函數(shù)橫坐標伸長到原來的2倍得到,再向左平行移動個單位長度得函數(shù),函數(shù)在區(qū)間內的所有零點,即的所有零點之和,畫出函數(shù)和函數(shù)的圖像,有6個交點,故得到根之和為.故答案為:C.【題目點撥】本題考查了三角函數(shù)的化簡問題,以及函數(shù)零點問題。于函數(shù)的零點問題,它和方程的根的問題,和兩個函數(shù)的交點問題是同一個問題,可以互相轉化;在轉化為兩個函數(shù)交點時,如果是一個常函數(shù)一個非常函數(shù),注意讓非常函數(shù)式子盡量簡單一些。5、D【解題分析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性直接求解.【題目詳解】解:因為,,所以,,的大小關系為.故選:D.【題目點撥】本題考查三個數(shù)的大小比較,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調性等基礎知識,屬于基礎題.6、B【解題分析】

根據(jù)向量的坐標運算得到,得到答案.【題目詳解】,故.故選:.【題目點撥】本題考查了向量的坐標運算,意在考查學生的計算能力.7、B【解題分析】

根據(jù)題意畫出三棱錐的圖形,將其放入一個長方體中,容易知道三棱錐的外接球半徑,利用球的表面積公式求解即可.【題目詳解】根據(jù)題意畫出三棱錐如圖所示,把三棱錐放入一個長方體中,三棱錐的外接球即這個長方體的外接球,長方體的外接球半徑等于體對角線的一半,所以三棱錐的外接球半徑,三棱錐的外接球的表面積.故選:B【題目點撥】本題主要考查三棱錐的外接球問題,對于三棱錐三條棱有兩兩垂直的情況,可以考慮將其放入一個長方體中求解外接球半徑,屬于基礎題.8、B【解題分析】

等體積法:.求出的面積和F到平面的距離,代入公式即可.【題目詳解】由題意可得,的面積為,因為,,平面ABC,所以點C到平面的距離為,即點F到平面的距離為4,則三棱錐的體積為.故三棱錐的體積為12.【題目點撥】此題考察了三棱錐體積的等體積法,通過變化頂點和底面進行轉化,屬于較易題目.9、B【解題分析】

試題分析:由誘導公式得,故選B.考點:誘導公式.10、D【解題分析】

取特殊值檢驗,利用排除法得答案。【題目詳解】因為,則當時,故A錯;當時,故B錯;當時,,故C錯;因為且,所以故選D.【題目點撥】本題考查不等式的基本性質,屬于簡單題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

基本事件總數(shù)n,利用列舉法求出這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有4種情況,由此能求出這兩張卡片上的數(shù)字之差的絕對值等于1的概率.【題目詳解】從分別寫有1,2,3,4,5的五張卡片中,任取兩張,基本事件總數(shù)n,這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4種情況,∴這兩張卡片上的數(shù)字之差的絕對值等于1的概率為p.故答案為.【題目點撥】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.12、【解題分析】

過棱錐頂點作,平面,則為的中點,為正方形的中心,連結,設正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【題目詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結,則為側面與底面所成角的平面角,即,設正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【題目點撥】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.13、8【解題分析】

先將所求化為M到AB中點的距離的最小值問題,再求得AB中點的軌跡為圓,利用點M到圓心的距離減去半徑求得結果.【題目詳解】設A、B中點為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點M到P的距離減去半徑,又,所以,故答案為8【題目點撥】本題考查了向量的加法運算,考查了求圓中弦中點軌跡的幾何方法,考查了點點距公式,考查了分析解決問題的能力,屬于中檔題.14、【解題分析】

根據(jù)模的計算公式可直接求解.【題目詳解】故填:.【題目點撥】本題考查了平面向量模的求法,屬于基礎題型.15、57【解題分析】

作出不等式組所表示的可行域,平移直線,觀察直線在軸的截距取最大值時的最優(yōu)解,再將最優(yōu)解代入目標函數(shù)可得出目標函數(shù)的最大值.【題目詳解】作出不等式組所表示的可行域如下圖所示:平移直線,當直線經過可行域的頂點時,該直線在軸上的截距取最大值,此時,取最大值,即,故答案為.【題目點撥】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,一般利用平移直線結合在坐標軸上的截距取最值時,找最優(yōu)解求解,考查數(shù)形結合數(shù)學思想,屬于中等題.16、【解題分析】

由題意利用兩個向量垂直的性質,兩個向量的數(shù)量積公式,求得的值.【題目詳解】因為向量,若,∴,則.故答案為:1.【題目點撥】本題主要考查兩個向量垂直的坐標運算,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解題分析】

(Ⅰ)由時,根據(jù),利用一元二次不等式的解法,即可求解;(Ⅱ)由對任意的恒成立,得到,利用基本不等式求得最小值,即可求解.【題目詳解】(Ⅰ)由題意,當時,函數(shù),由,即,解得或,所以不等式的解集為.(Ⅱ)因為對任意的恒成立,即,又由,當且僅當時,即時,取得最小值,所以,即實數(shù)的最大值為.【題目點撥】本題主要考查了一元二次不等式的求解,以及基本不等式的應用,其中解答中熟記一元二次不等式的解法,以及合理利用基本不等式求得最小值是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2)(3)7.【解題分析】

(1)由可得為等差數(shù)列,從而可得數(shù)列的通項公式;(2)先判斷時數(shù)列的各項為正數(shù),時數(shù)列各項為負數(shù),分兩種情況討論分別利用等差數(shù)列求和公式求解即可;(3)求得利用裂項相消法求得,由可得結果.【題目詳解】(1)由題意,,為等差數(shù)列,設公差為,由題意得,.(2)若時,時,,故.(3),若對任意成立,的最小值是,對任意成立,的最大整數(shù)值是7,即存在最大整數(shù)使對任意,均有【題目點撥】本題主要考查等差數(shù)列的通項公式與求和公式,以及裂項相消法求和,屬于中檔題.裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.19、3【解題分析】

利用兩角和的正切公式化簡,求得的值,根據(jù)誘導公式求得的值.【題目詳解】由得.將代入上式,得,解得.于是,所以.【題目點撥】本小題主要考查兩角和的正切公式、誘導公式,屬于基礎題.20、(1);(2)【解題分析】

(1)由直線AB的斜率,中點坐標,寫出線段AB中垂線的直線方程,與直線x-2y-3=0聯(lián)立即可求出交點的坐標即為圓心的坐標,再根據(jù)兩點間的距離公式求出圓心到點A的距離即為圓的半徑,根據(jù)圓心坐標與半徑寫出圓的標準方程即可;(2)設圓的方程為,代入題中三點坐標,列方程組求解即可【題目詳解】(1)由點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論