海南市重點中學2023-2024學年數學高三上期末考試模擬試題含解析_第1頁
海南市重點中學2023-2024學年數學高三上期末考試模擬試題含解析_第2頁
海南市重點中學2023-2024學年數學高三上期末考試模擬試題含解析_第3頁
海南市重點中學2023-2024學年數學高三上期末考試模擬試題含解析_第4頁
海南市重點中學2023-2024學年數學高三上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

海南市重點中學2023-2024學年數學高三上期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖是民航部門統計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數據統計圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價格最高B.天津的往返機票平均價格變化最大C.上海和廣州的往返機票平均價格基本相當D.相比于上一年同期,其中四個城市的往返機票平均價格在增加2.的內角的對邊分別為,若,則內角()A. B. C. D.3.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心4.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.5.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.6.命題“”的否定是()A. B.C. D.7.已知平面平面,且是正方形,在正方形內部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.8.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.9.中國古代數學著作《孫子算經》中有這樣一道算術題:“今有物不知其數,三三數之余二,五五數之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數除以正整數后的余數為,則記為,例如.現將該問題以程序框圖的算法給出,執行該程序框圖,則輸出的等于().A. B. C. D.10.執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.11.已知函數是上的偶函數,且當時,函數是單調遞減函數,則,,的大小關系是()A. B.C. D.12.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.84二、填空題:本題共4小題,每小題5分,共20分。13.如果復數滿足,那么______(為虛數單位).14.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數物價各幾何?”借用我們現在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數和物品價格?答:一共有_____人;所合買的物品價格為_______元.15.已知,若,則a的取值范圍是______.16.設等差數列的前項和為,若,,則______,的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.18.(12分)選修4-5:不等式選講已知函數f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.19.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.20.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:21.(12分)已知為等差數列,為等比數列,的前n項和為,滿足,,,.(1)求數列和的通項公式;(2)令,數列的前n項和,求.22.(10分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據條形圖可折線圖所包含的數據對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據折線圖可知深圳的變化幅度最小,根據條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據條形圖和折線圖進行數據分析,屬于基礎題.2、C【解析】

由正弦定理化邊為角,由三角函數恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.3、B【解析】

解出,計算并化簡可得出結論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.4、D【解析】

首先將轉化為,只需求出的取值范圍即可,而表示可行域內的點與圓心距離,數形結合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規劃相關的取值范圍問題,涉及到向量的線性運算、數量積、點到直線的距離等知識,考查學生轉化與劃歸的思想,是一道中檔題.5、D【解析】

根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.6、D【解析】

根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.7、C【解析】

根據與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(點在第一象限內),由得,即,化簡得,由于點在第一象限內,所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數形結合的數學思想方法,屬于難題.8、C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.9、C【解析】從21開始,輸出的數是除以3余2,除以5余3,滿足條件的是23,故選C.10、B【解析】

根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.11、D【解析】

利用對數函數的單調性可得,再根據的單調性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數是單調遞減函數,所以.因為為偶函數,故,所以.故選:D.【點睛】本題考查抽象函數的奇偶性、單調性以及對數函數的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數來傳遞不等關系,本題屬于中檔題.12、D【解析】

利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把已知等式變形,再由復數代數形式的乘除運算化簡,然后利用復數模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數除法運算,考查復數的模的求法,屬于基礎題.14、753【解析】

根據物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數學文化及一元一次方程的應用,屬于中檔題.15、【解析】

函數等價為,由二次函數的單調性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數連續,可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點睛】本題考查分段函數的單調性的判斷和運用:解不等式,考查轉化思想和運算能力,屬于中檔題.16、【解析】

利用等差數列前項和公式,列出方程組,求出首項和公差的值,利用等差數列的通項公式可求出數列的通項公式,可求出的表達式,然后利用雙勾函數的單調性可求出的最大值.【詳解】(1)設等差數列的公差為,則,解得,所以,數列的通項公式為;(2),,令,則且,,由雙勾函數的單調性可知,函數在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.【點睛】本題考查等差數列的通項公式、前項和的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】

(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數的有界性,求出的面積的最大值.【詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點睛】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數學運算能力,屬于中檔題.18、(1),(2)【解析】試題分析:用零點分區間討論法解含絕對值的不等式,根據絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].19、(1)見解析(2)見解析【解析】

(1)連結OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結OE.因為底面ABCD是菱形,所以O為AC的中點,又因為E是棱VC的中點,所以VA∥OE,又因為OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因為VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因為底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因為BD?平面BDE,所以平面VAC⊥平面BDE.【點睛】本題考查了線面平行,面面垂直,意在考查學生的推斷能力和空間想象能力.20、(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.∴當時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據絕對值的定義,合理去掉絕對值號,及合理轉化恒成立問題是解答本題的關鍵,著重考查分析問題和解答問題的能力,以及轉化思想的應用.21、(1),;(2).【解析】

(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數項分一組用裂項相消法求和,偶數項分一組用等比數列求和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論