




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省東南聯合體2024屆高考適應性月考卷(六)數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.2.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.3.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.4.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數m的最小值是()A. B.3 C. D.5.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人6.已知數列為等差數列,為其前項和,,則()A. B. C. D.7.某個命題與自然數有關,且已證得“假設時該命題成立,則時該命題也成立”.現已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立8.數列的通項公式為.則“”是“為遞增數列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要9.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.10.執行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.11.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.712.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中二項式系數最大的項的系數為_________(用數字作答).14.若復數滿足,其中為虛數單位,則的共軛復數在復平面內對應點的坐標為_____.15.春節期間新型冠狀病毒肺炎疫情在湖北爆發,為了打贏疫情防控阻擊戰,我省某醫院選派2名醫生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.16.已知向量,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中國古建筑中的窗飾是藝術和技術的統一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構成,整個窗芯關于長方形邊框的兩條對稱軸成軸對稱.設菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?18.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.19.(12分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經過原點的直線與交于兩點,直線的斜率都存在,且,求的值.20.(12分)已知,.(1)解;(2)若,證明:.21.(12分)手工藝是一種生活態度和對傳統的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.22.(10分)已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【題目詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【題目點撥】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.2、C【解題分析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.3、C【解題分析】
設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【題目詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【題目點撥】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.4、D【解題分析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數m的取值范圍,即求正實數m的最小值.【題目詳解】由題意,設點.,即,整理得,則,解得或..故選:.【題目點撥】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.5、D【解題分析】
根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【題目詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【題目點撥】本題考查合情推理,考查推理能力,屬于中等題.6、B【解題分析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【題目詳解】由等差數列的性質可得,.故選:B.【題目點撥】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.7、C【解題分析】
寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【題目詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【題目點撥】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.8、A【解題分析】
根據遞增數列的特點可知,解得,由此得到若是遞增數列,則,根據推出關系可確定結果.【題目詳解】若“是遞增數列”,則,即,化簡得:,又,,,則是遞增數列,是遞增數列,“”是“為遞增數列”的必要不充分條件.故選:.【題目點撥】本題考查充分條件與必要條件的判斷,涉及到根據數列的單調性求解參數范圍,屬于基礎題.9、A【解題分析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【題目詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【題目點撥】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.10、B【解題分析】
由題意,框圖的作用是求分段函數的值域,求解即得解.【題目詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【題目點撥】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.11、B【解題分析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【題目詳解】在等差數列的前項和為,則則故選:B【題目點撥】本題考查等差數列中求由已知關系求公差,屬于基礎題.12、D【解題分析】
根據拋物線的定義求得,由此求得的長.【題目詳解】過作,垂足為,設與軸的交點為.根據拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【題目點撥】本小題主要考查拋物線的定義,考查數形結合的數學思想方法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、5670【解題分析】
根據二項式展開的通項,可得二項式系數的最大項,可求得其系數.【題目詳解】二項展開式一共有項,所以由二項式系數的性質可知二項式系數最大的項為第5項,系數為.故答案為:5670【題目點撥】本題考查了二項式定理展開式的應用,由通項公式求二項式系數,屬于中檔題.14、【解題分析】
把已知等式變形,再由復數代數形式的乘除運算化簡,求出得答案.【題目詳解】,,則,的共軛復數在復平面內對應點的坐標為,故答案為【題目點撥】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義準確計算是關鍵,是基礎題.15、24【解題分析】
先求出每地一名醫生,3名護士的選派方法的種數,再減去甲乙兩名護士到同一地的種數即可.【題目詳解】解:每地一名醫生,3名護士的選派方法的種數有,若甲乙兩名護士到同一地的種數有,則甲乙兩名護士不到同一地的種數有.故答案為:.【題目點撥】本題考查利用間接法求排列組合問題,正難則反,是基礎題.16、3【解題分析】
由題意得,,再代入中,計算即可得答案.【題目詳解】由題意可得,,∴,解得,∴.故答案為:.【題目點撥】本題考查向量模的計算,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意向量數量積公式的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉化為一元函數,令,則在上為增函數,解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導函數在上恒成立,故在上單調遞減,所以可得.則=.因為函數和在上均為增函數,所以在上為增函數,故當,即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數應用題18、(1)①函數與的圖象在區間上有交點;②證明見解析;(2)且;【解題分析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可.【題目詳解】解:(1)①當時,函數,令,,則,,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數在和上單調遞增,又函數在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數的范圍是且.【題目點撥】本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.19、(1)(2)【解題分析】
(1)不妨設,,計算得到,根據面積得到,計算得到答案.(2)設,,,聯立方程利用韋達定理得到,,代入化簡計算得到答案.【題目詳解】(1)由題意不妨設,,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設,,,則.∵,∴,設直線的方程為,聯立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【題目點撥】本題考查了橢圓方程,定值問題,意在考查學生的計算能力和綜合應用能力.20、(1);(2)見解析.【解題分析】
(1)在不等式兩邊平方化簡轉化為二次不等式,解此二次不等式即可得出結果;(2)利用絕對值三角不等式可證得成立.【題目詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【題目點撥】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.21、(1);(2)①可能是2件;②詳見解析【解題分析】
(1)由一件手工藝品質量為B級的情形,并結合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數,進而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數;②分別求出一件手工藝品質量為A、B、C、D級的概率,進而可列出X的分布列,求出期望即可.【題目詳解】(1)一件手工藝品質量為B級的概率為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 造價員土建案例-鋼筋工程
- 技能培訓有限空間作業安全管理
- 2025寄售合同模板
- 2024年09月浙醫健衢州醫院招聘工作人員1人筆試歷年專業考點(難、易錯點)附帶答案詳解
- 化學實驗室安全管理
- 工貿行業重大生產安全事故隱患判定標準解讀
- 2024年09月河北承德平泉市市直和衛健系統所屬事業單位招聘工作人員107人(醫療崗56人)筆試歷年專業考點(難、易錯點)附帶答案詳解
- 《淚滴的奇遇》課件
- 2025年自愿解除勞動合同協議書模板
- 2024年09月昆明市祿勸縣中醫院編外人員招聘(10人)筆試歷年專業考點(難、易錯點)附帶答案詳解
- 船舶駕駛培訓虛擬場景構建-深度研究
- 手術患者預防跌倒
- 清華-市場營銷學教案
- 人工智能在智能安防中的應用
- 無人機操控 教學設計公開課教案教學設計課件
- 水上交通工程的施工方案
- 洞察時代潮青春勇擔當
- 安全工器具及電氣工器具管理制度(2篇)
- T-CERS 0018-2023 水力發電企業安全生產標準化實施規范
- 護理問診的方法與技巧
- (試卷)2024貴州省初中學業水平考試·物理
評論
0/150
提交評論