




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省呂梁市重點中學2024屆高三下學期3月模擬測試數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.2.函數(其中,,)的圖象如圖,則此函數表達式為()A. B.C. D.3.已知函數fx=sinωx+π6+A.16,13 B.14.函數的大致圖像為()A. B.C. D.5.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.6.拋物線的焦點為,點是上一點,,則()A. B. C. D.7.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數為()A.1 B.2 C.3 D.48.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.9.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π10.已知函數,且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.11.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數為()A.1 B.2 C.3 D.412.函數f(x)=lnA. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足對任意,,則數列的通項公式__________.14.函數在的零點個數為________.15.已知內角,,的對邊分別為,,.,,則_________.16.已知非零向量的夾角為,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知中,角所對邊的長分別為,且(1)求角的大小;(2)求的值.18.(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列.(2)令,求數列的前項和.19.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.20.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.21.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發現與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該校考人名校的人數;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.參考公式:,參考數據:,,,22.(10分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
連接,可得,在中,由余弦定理得,結合雙曲線的定義,即得解.【題目詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據雙曲線的定義,得,所以雙曲線的離心率故選:D【題目點撥】本題考查了雙曲線的性質及雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.2、B【解題分析】
由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【題目詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為.故選:B.【題目點撥】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.3、A【解題分析】
將fx整理為3sinωx+π3,根據x的范圍可求得ωx+π3∈π【題目詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【題目點撥】本題考查利用正弦型函數的值域求解參數范圍的問題,關鍵是能夠結合正弦型函數的圖象求得角的范圍的上下限,從而得到關于參數的不等式.4、D【解題分析】
通過取特殊值逐項排除即可得到正確結果.【題目詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【題目點撥】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.5、C【解題分析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.6、B【解題分析】
根據拋物線定義得,即可解得結果.【題目詳解】因為,所以.故選B【題目點撥】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.7、B【解題分析】
設出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【題目詳解】解:不妨設棱長為:2,對于①連結,則,即與不垂直,又,①不正確;對于②,連結,,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結,易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【題目點撥】本題考查命題的真假的判斷,棱錐的結構特征,直線與平面垂直,直線與直線的位置關系的應用,考查空間想象能力以及邏輯推理能力.8、B【解題分析】
依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【題目詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【題目點撥】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題9、C【解題分析】
兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.10、C【解題分析】
根據題意,得,,則為減函數,從而得出函數的單調性,可比較和,而,比較,即可比較.【題目詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數為減函數,函數在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.【題目點撥】本題考查利用函數的單調性比較大小,還考查化簡能力和轉化思想.11、A【解題分析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【題目詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數,當時,,當即時,取等號,當時,函數沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數為1個.故選:A.【題目點撥】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.12、C【解題分析】因為fx=lnx2-4x+4x-23=二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用累加法求得數列的通項公式,由此求得的通項公式.【題目詳解】由題,所以故答案為:【題目點撥】本小題主要考查累加法求數列的通項公式,屬于基礎題.14、【解題分析】
求出的范圍,再由函數值為零,得到的取值可得零點個數.【題目詳解】詳解:由題可知,或解得,或故有3個零點.【題目點撥】本題主要考查三角函數的性質和函數的零點,屬于基礎題.15、【解題分析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【題目詳解】由正弦定理得,,.故答案為:.【題目點撥】本題考查了正弦定理求角,三角恒等變換,屬于基礎題.16、1【解題分析】
由已知條件得出,可得,解之可得答案.【題目詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【題目點撥】本題考查根據向量的數量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數量積化簡求解即可,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)正弦定理的邊角轉換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構造齊次式,利用正弦定理的邊角轉換,得到,結合余弦定理得到【題目詳解】解:(1)由已知,得又∵∴∴,因為得∵∴.(2)∵又由余弦定理,得∴【題目點撥】1.考查學生對正余弦定理的綜合應用;2.能處理基本的邊角轉換問題;3.能利用特殊的三角函數值推特殊角,屬于中檔題18、(1)見解析;(2)【解題分析】
(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【題目詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【題目點撥】本題考查了等差數列的證明,考查了等差數列及等比數列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.19、(1)證明見解析(2)【解題分析】
(1)由等腰梯形的性質可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數量積求解即可.【題目詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.【題目點撥】本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.20、(1)1;(2)5.【解題分析】
(1)由同角三角函數關系求得,再由兩角差的正弦公式求得,最后由正弦定理構建方程,求得答案.(2)在中,由正弦定理構建方程求得AB,再由任意三角形的面積公式構建方程求得BC,最后由余弦定理構建方程求得AC.【題目詳解】(1)據題意,,且,所以.所以.在中,據正弦定理可知,,所以.(2)在中,據正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據余弦定理可知,,所以.【題目點撥】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數關系和兩角差的正弦公式化簡求值,屬于簡單題.21、(1);(2)117人;(3)分布列見解析,【解題分析】
(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據回歸直線方程計算公式,計算可得人數;(3)和被選中的人數分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數學期望.【題目詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該校考入名校的人數約為117人(3)由題知和被選中的人數分別為2和3,進行演講的兩人是2018年畢業的人數的所有可能取值為0,1,2,,的分布列為012【題目點撥】本小題主要考查平均數有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數據處理能力,屬于中檔題.22、(1)證明見解析(2)【解題分析】
(1)取中點為,連接,,,,根據線段關系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東華宇工學院《普通生物學動物部分》2023-2024學年第二學期期末試卷
- 山東華宇工學院《城市公交規劃與運營管理》2023-2024學年第二學期期末試卷
- 新星職業技術學院《燃燒學》2023-2024學年第二學期期末試卷
- 江西科技職業學院《磁性材料與器件》2023-2024學年第二學期期末試卷
- 南京交通職業技術學院《城市能源系統》2023-2024學年第二學期期末試卷
- 南通師范高等專科學校《遙感概論實驗》2023-2024學年第一學期期末試卷
- 山東省蘭陵縣重點達標名校2025屆中考模擬最后十套:化學試題(三)考前提分仿真卷含解析
- 公司計件工資勞動合同書
- 二零二五抖音發布協議書模板
- 二零二五版月子中心月嫂服務合同書
- 五年級下冊數學課件 -4.1 用數對確定位置 ︳青島版 (共20張PPT)
- 柏拉圖分析案例
- 巖棉項目申報書_參考模板
- 二襯帶模注漿施工方案
- 施工組織設計方案交底記錄
- 《英語委婉語與忌語》PPT課件.ppt
- ISO9001-14001-2015內部審核檢查表
- 風險和機遇應對措施有效性評審記錄表副本
- 調查問卷設計-課件PPT
- 照金參觀學習心得
- 井下電纜著火應急演練預案
評論
0/150
提交評論