




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
塔式起重機(jī)位置優(yōu)化中英文對(duì)照外文翻譯文獻(xiàn)塔式起重機(jī)位置優(yōu)化中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)原文:LOCATIONOPTIMIZATIONFORAGROUPOFTOWERCRANESABSTRACT:Acomputerizedmodeltooptimizelocationofagroupoftowercranesispresented.Locationtions.Threesubmodelsarealsopresented.First,theinitiallocationmodelclassifiestasksintogroupsandmentalresultsandthestepsnecessaryforimplementationofthemodelarediscussed.INTRODUCTIONOnlargeconstructionprojectsseveralcranesgenerallyundertaketransportationtasks,particularlywhenasinglecranecannotprovideoverallcoverageofalldemandandsupplypoints,and/orwhenitscapacityisexceededbytheneedsofatightconstructionschedule.Manyfactorsinfluencetowercranelocation.Intheinterestsofsafetyandefficientoperation,cranesshouldbelocatedasfarapartaspossibletoavoidinterferenceandcollisions,ontheconditionthatallplannedtaskscanbeperformed.However,thisidealsituationisoftendifficulttoachieveinpractice;constrainedworkspaceandlimitationsofcranecapacitymakeitinevitablethatcraneareasoverlap.Subsequently,interferenceandcollisionscanoccurevenifcranejibsworkatdifferentlevels.Craneposition(s)tendtobedeterminedthroughtrialanderror,basedonsitetopography/shapeandoverallcoverageoftasks.Thealternativesforcranelocationcanbecomplex,somanagersremainconfrontedbymultiplechoicesandlittlequantitativereference.Cranelocationmodelshaveevolvedoverthepast20years.Warszawski(1973)establishedatime-distanceformulabywhichquantitativeevaluationoflocationwaspossible.FurusakaandGray(1984)presentedadynamicprogrammingmodelwiththeobjectivefunctionbeinghirecost,butwithoutconsiderationoflocation.GrayandLittle(1985)optimizedcranelocationinirregular-shapedbuildingswhileWijesunderaandHarris(1986)designedasimulationmodeltoreconstructoperationtimesandequipmentcycleswhenhandlingconcrete.FarrellandHover(1989)developedadatabasewithagraphicalinterfacetoassistincraneselectionandlocation.ChoiandHarris(1991)introducedanothermodeltooptimizesingletowercranelocationbycalculatingtotaltransportationtimesincurred.Emsley(1992)proposedseveralimprovementstotheChoiandHarrismodel.Apartfromthesealgorithmicapproaches,rule-basedsystemshavealsoevolvedtoassistdecisionsoncranenumbersandtypesaswellastheirsitelayout。AssumptionsSitemanagerswereinterviewedtoidentifytheirconcernsandobservecurrentapproachestothetaskathand.Further,operationswereobservedon14siteswherecraneswereintensivelyused(fourinChina,sixinEngland,andfourinScotland).Timestudieswerecarriedoutonfoursitesforsixweeks,twositesfortwoweekseach,andtwoforoneweekeach.Findingssuggestedinteraliathatfullcoverageofworkingarea,balancedworkloadwithnointerference,andgroundconditionsaremajorconsiderationsindetermininggrouplocation.Therefore,effortswereconcentratedonthesefactors(exceptgroundconditionsbecausesitemanagerscanspecifyfeasiblelocationareas).Thefollowingfourassumptionswereappliedtomodeldevelopment(detailedlater):Geometriclayoutofallsupply(S)anddemand(D)points,togetherwiththetypeandnumberofcranes,arepredetermined.ForeachS-Dpair,demandlevelsfortransportationareknown,e.g.,totalnumberoflifts,numberofliftsforeachbatch,maximumload,unloadingdelays,andsoon.Thedurationofconstructionisbroadlysimilarovertheworkingareas.ThematerialtransportedbetweenanS-Dpairishandledbyonecraneonly.MODELDESCRIPTIONThreestepsareinvolvedindeterminingoptimalpositionsforacranegroup.First,alocationgenerationmodelproducesanapproximatetaskgroupforeachcrane.Thisisthenadjustedbyataskassignmentmodel.Finally,anoptimizationmodelisappliedtoeachtowerinturntofindanexactcranelocationforeachtaskgroup.InitialLocationGenerationModelLiftCapacityand‘‘Feasible’’AreaCraneliftcapacityisdeterminedfromaradius-loadcurvewherethegreatertheload,thesmallerthecrane’soperatingradius.Assumingaloadatsupplypoint(S)withtheweightw,itscorrespondingcraneradiusisr.Acraneisthereforeunabletoliftaloadunlessitislocatedwithinacirclewithradiusr[Fig.1(a)].Todeliveraloadfrom(S)todemandpoint(D),thecranehastobepositionedwithinanellipticalarea(a)FIG.1.FeasibleAreaofCraneLocationforTaskFIG.2.Task“Closenness”enclosedbytwocircles,showninFig.1(b).Thisiscalledthefeasibletaskarea.ThesizeoftheareaisrelatedtothedistancebetweenSandD,theweightoftheload,andcranecapacity.Thelargerthefeasiblearea,themoreeasilythetaskcanbehandled.Measurementof‘‘Closeness’’ofTasksThreegeometricrelationshipsexistforanytwofeasibletaskareas,asillustratedinFig.2;namely,(a)onefullyenclosedbyanother(tasks1and2);(b)twoareaspartlyintersected(tasks1and3);and(c)twoareasseparated(tasks2and3).Asindicatedincases(a)and(b),bybeinglocatedinareaA,acranecanhandlebothtasks1and2,andsimilarly,withinB,tasks1and3.However,case(c)showsthattasks2and3aresofarfromeachotherthatasingletowercraneisunabletohandlebothwithoutmovinglocation;somorethanonecraneorgreaterliftingcapacityisrequired.Theclosenessoftaskscanbemeasuredbythesizeofoverlappingarea,e.g.,task2isclosertotask1thantask3becausetheoverlappingareabetweentasks1and2islargerthanthatfor1and3.Thisconceptcanbeextendedtomeasureclosenessofatasktoataskgroup.Forexample,areaCinFig.2(b)isafeasibleareaofataskgroupconsistingofthreetasks,wheretask5issaidtobeclosertothetaskgroupthantask4sincetheoverlappingareabetweenCandDislargerthanthatbetweenCandE.Iftask5isaddedtothegroup,thefeasibleareaofthenewgroupwouldbeD,showninFigure2(c).GroupingTasksintoSeparatedClassesIfnooverlappingexistsbetweenfeasibleareas,twocranesarerequiredtohandleeachtaskseparatelyifnootheralternatives—suchascraneswithgreaterliftingcapacityorreplanningofsitelayout—areallowed.Similarly,threecranesarerequirediftherearethreetasksinwhichanytwohavenooverlappingareas.Generally,taskswhosefeasibleareasareisolatedmustbehandledbyseparatecranes.Theseinitialtasksareassignedrespectivelytodifferent(crane)taskgroupsasthefirstmemberofthegroup,thenallothertasksareclusteredaccordingtoproximitytothem.Obviously,tasksfurthestapartaregivenpriorityasinitialtasks.Whenmultiplechoicesexist,computerrunningtimecanbereducedbyselectingtaskswithsmallerfeasibleareasasinitialtasks.Themodelprovidesassistanceinthisrespectbydisplayinggraphicallayoutoftasksandalistofthesizeoffeasibleareaforeach.Afterassigninganinitialtasktoagroup,themodelsearchesfortheclosestremainingtaskbycheckingthesizeofoverlappingarea,thenplacesitintothetaskgrouptoproduceanewfeasibleareacorrespondingtotherecentlygeneratedtaskgroup.Theprocessisrepeateduntiltherearenotasksremaininghavinganoverlappingareawithinthepresentgroup.Thereafter,themodelswitchestosearchforthenextgroupfromthepoolofalltasks,theprocessbeingcontinueduntilalltaskgroupshavebeenconsidered.Ifataskfailstobeassignedtoagroup,amessageisproducedtoreportwhichtasksareleftsotheusercansupplymorecranesor,alternatively,changethetasklayoutandrunthemodelagain.InitialCraneLocationWhentaskgroupshavebeencreated,overlappingareascanbeformed.Thus,theinitiallocationsareautomaticallyatthegeometriccentersofthecommonfeasibleareas,oranywherespecifiedbytheuserwithincommonfeasibleareas.TaskAssignmentModelGrouplocationisdeterminedbygeometric‘‘closeness.’’However,onecranemightbeoverburdenedwhileothersareidle.Furthermore,cranescanofteninterferewitheachothersotaskassignmentisappliedtothosetasksthatcanbereachedbymorethanonecranetominimizethesepossibilities.FeasibleAreasfromLastThreeSetsofInputshapeandsizeoffeasibleareas,illustratedinFig.9.Inthiscasestudy,fromthedataandgraphicoutput,theusermaybecomeawarethatoptimallocationsledbytestsets1,2,and3(Fig.3)arethebestchoices(balancedworkload,conflictpossibility,andefficientoperation).Alternatively,inconnectionwithsiteconditionssuchasavailabilityofspaceforthecranepositionandgroundconditionsforthefoundation,siteboundarieswererestricted.Consequently,oneofthecraneshadtobepositionedinthebuilding.Inthisrespect,theoutcomesresultingfromset4wouldbeagoodchoiceintermsofareasonableconflictindexandstandarddeviationofworkload,providedthataclimbingcraneisavailableandthebuildingstructureiscapableofsupportingthiskindofcrane.Otherwise,set5resultswouldbepreferablewiththestationarytowercranelocatedintheelevatorwell,butatthecostofsufferingthehighpossibilityofinterferenceandunbalancedworkloadsOverallcoverageoftaskstendstobethemajorcriterioninplanningcranegrouplocation.However,thisrequirementmaynotdetermineoptimallocation.Themodelhelpsimproveconventionallocationmethods,basedontheconceptthattheworkloadforeachcraneshouldbebalanced,likelihoodofinterferenceminimized,andefficientoperationachieved.Todothis,threesubmodelswerehighlighted.First,byclassifyingallness’’anoveralllayoutisproduced.Second,basedonasetofpointslocatedrespectivelyinthefeasibleareas(initiallocation),thetaskassignmentreadjuststhegroupstoproducenewoptimaltaskgroupswithsmoothedworkloadsandleastpossibilityofconflicts,togetherwithfeasibleareascreated.Finally,optimizationisappliedforeachcraneonebyonetofindanexactlocationintermsofhooktransporttimeinthreedimensions.Experimentalresultsindicatethatthemodelperformssatisfactorily.Inadditiontotheimprovementonsafetyandaverageefficiencyofallcranes,10–40%savingsoftotalhookstransportationtimecanbeachieved.Efforthasbeenmadetomodelthekeycriteriaforlocatingagroupoftowercranes,andtworealsitedatahavebeenusedtotestthemodel.However,itdoesnotcapturealltheexpertiseandexperienceofsitemanagers;otherfactorsrelatingtobuildingstructure,foundationconditions,laydownspacesformaterials,accessibilityofadjoiningpropertiesandsoon,alsocontributetotheproblemoflocations.Therefore,thefinaldecisionshouldbemadeinconnectionwiththesefactors.翻譯:一組塔式起重機(jī)的位置優(yōu)化摘要計(jì)算機(jī)模型能使一組塔機(jī)位置更加優(yōu)化。合適的位置條件能平衡工作載荷,降低塔機(jī)之間碰撞的可能性,提高工作效率。這里對(duì)三個(gè)子模型進(jìn)行了介紹。首先,把初始位置模型分組,根據(jù)幾何的相似性,確認(rèn)每個(gè)塔機(jī)的合適位置。然后,調(diào)整前任務(wù)組的平衡工作載荷并降低碰撞的可能性。最后,運(yùn)用一個(gè)單塔起重機(jī)優(yōu)化模型去尋找吊鉤運(yùn)輸時(shí)間最短的位置。本文對(duì)模型完成的實(shí)驗(yàn)結(jié)果和必要的步驟進(jìn)行了討論。引言在大規(guī)模的建設(shè)工程中特別是當(dāng)一個(gè)單塔起動(dòng)機(jī)不能全面的完成重要的任務(wù)要求時(shí)或者當(dāng)塔機(jī)不能完成緊急的建設(shè)任務(wù)時(shí)通常是由幾個(gè)塔機(jī)同時(shí)完成任務(wù)。影響塔機(jī)的因素很多。從操作效率和安全方面考慮,如果所有計(jì)劃的任務(wù)都能執(zhí)行,應(yīng)將塔機(jī)盡可能的分開,避免互相干擾和碰撞。然而這種理想的情況在實(shí)踐中很難成功,因?yàn)楣ぷ骺臻g的限制和塔機(jī)的耐力有限使塔機(jī)的工作區(qū)域重疊是不可避免的。因此,即使起重機(jī)的鐵臂在不同的水平工作面也會(huì)發(fā)生互相干擾和碰撞。在地形選址和全面的完成任務(wù)的基礎(chǔ)上,通過反復(fù)實(shí)驗(yàn)來決定塔式起重機(jī)的合適位置。起重機(jī)位置的選擇很復(fù)雜,因此,管理人員仍然面臨著多樣的選擇和少量的定量參考。在過去的20年里,起重機(jī)位置模型逐步形成。Warszawski(1973)嘗試盡可能用時(shí)間與距離來計(jì)算塔機(jī)的位置。FurusakaandGray(1984)提出用目標(biāo)函數(shù)和被雇用成本規(guī)劃動(dòng)態(tài)模型,但是沒考慮到位置。GrayandLittle(1985)在處理不規(guī)則的混凝土建筑物時(shí)候,設(shè)置位置優(yōu)化的塔式起動(dòng)機(jī)。然而,WijesunderaandHarris(1986)在處理具體的任務(wù)時(shí)減少了操作時(shí)間和延長(zhǎng)了設(shè)備使用周期時(shí)設(shè)計(jì)了一種模擬模型。FarrellandHover(1989)開發(fā)了帶有圖解界面的數(shù)據(jù)庫,來協(xié)助起動(dòng)機(jī)的位置的選擇。ChoiandHarris(1991)通過計(jì)算運(yùn)輸所須的全部時(shí)間來提出另一種優(yōu)化單塔起重機(jī)位置優(yōu)化。Emsley(1992)改進(jìn)了ChoiandHarris提出的模型。除了在計(jì)算方法相似外,起重機(jī)的數(shù)量類型和設(shè)計(jì)系統(tǒng)規(guī)則也得以提高假設(shè)采訪網(wǎng)站管理員關(guān)于他們的公司和觀察到手上的工作電流的方法。另外觀察起重機(jī)集中在14個(gè)操作站點(diǎn)的運(yùn)用。(在中國(guó)是4個(gè),在英格蘭是6個(gè),在蘇格蘭是4個(gè))。研究設(shè)備放在4個(gè)站點(diǎn)時(shí)間為6個(gè)星期,兩個(gè)站點(diǎn)用兩個(gè)星期時(shí)間。調(diào)查結(jié)果顯示尤其是在全面覆蓋工作領(lǐng)域,沒有干擾,平衡工作載荷和地面情況是決定塔機(jī)位置重要的原因。因此,重點(diǎn)在這些因素上(除了地面情況因?yàn)檎军c(diǎn)管理員能明確說明合適的區(qū)域位置)。下面4種假設(shè)被應(yīng)用于模型發(fā)展(以后的詳盡)預(yù)先確定所有供應(yīng)點(diǎn)和需求點(diǎn)的幾何布局、起重機(jī)的類型和數(shù)量。對(duì)于每個(gè)供應(yīng)點(diǎn)和需求點(diǎn),運(yùn)輸需求水平是已知的。例如,起重機(jī)的總數(shù)、每組起重機(jī)的數(shù)量、最大限度的裝載、延遲卸貨等等。在建設(shè)時(shí)期和工作區(qū)域大體相同。只用一個(gè)起重機(jī)運(yùn)輸供應(yīng)點(diǎn)與需求點(diǎn)之間的物料。模型描述決定起重機(jī)理想的位置有三個(gè)位置條件。首先用位置模型產(chǎn)生一個(gè)相似的任務(wù)組,然后用任務(wù)分配模型調(diào)整,最后優(yōu)化模型輪流并運(yùn)用到每個(gè)任務(wù)組中的準(zhǔn)確位置。初始位置生成模型起重機(jī)的起升能力和合適的區(qū)域起重機(jī)的升起能力取決于曲線的半徑,負(fù)荷量越大,起重機(jī)的操作半徑越小。假設(shè)供應(yīng)點(diǎn)的負(fù)荷量是w,相應(yīng)的起重機(jī)半徑是r。一個(gè)起重機(jī)若不能承受裝載除非它的半徑在圓內(nèi)(圖1)。從供應(yīng)點(diǎn)傳送一個(gè)裝載需求點(diǎn),必須把起重機(jī)放在兩個(gè)重合的橢圓區(qū)域,如圖表1(b),這是合適任務(wù)區(qū)域。區(qū)域的大小與供應(yīng)點(diǎn)和需求點(diǎn)的距離、負(fù)荷量、起重機(jī)的耐力有關(guān)。合當(dāng)?shù)膮^(qū)域越大,越容易完成任務(wù)。相近任務(wù)的測(cè)量對(duì)于任何兩種合適的任務(wù)區(qū)域存在3種幾何關(guān)系,如圖解2.也就是說,(a)一個(gè)圖與另個(gè)圖完全重合(任務(wù)1與2)。(b)兩個(gè)區(qū)域部分相交(任務(wù)1與3)。(c)兩個(gè)區(qū)域分開(任務(wù)2與3)。如指出的實(shí)例a與b,起重機(jī)被放在區(qū)域A中能完成任務(wù)1和任務(wù)2,同樣的,在區(qū)域B中,能完成任務(wù)1和3.然而實(shí)例c顯示,任務(wù)2和3距離太遠(yuǎn),一個(gè)單獨(dú)的起重機(jī)在沒有移動(dòng)位置的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 解除審計(jì)合同協(xié)議
- 發(fā)票號(hào)碼是合同協(xié)議號(hào)碼
- 鐵路合同協(xié)議
- 鋁合金合同協(xié)議書范本
- 膠囊房出租合同范本
- 海上航標(biāo)維護(hù)合同范本
- 上海幕墻施工合同范本
- 買房之怎樣簽商品房買賣合同
- 品牌托管合同
- 2025醫(yī)療器械維護(hù)保養(yǎng)服務(wù)承包合同
- 放療皮膚反應(yīng)分級(jí)護(hù)理
- 2025年03月內(nèi)蒙古鄂爾多斯市東勝區(qū)事業(yè)單位引進(jìn)高層次人才和緊缺專業(yè)人才50人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 衛(wèi)生院全國(guó)預(yù)防接種日宣傳活動(dòng)總結(jié)(8篇)
- 小學(xué)消防知識(shí)教育
- 深入貫徹學(xué)習(xí)2025年中央八項(xiàng)規(guī)定精神教育測(cè)試題及答案
- 安徽2025年03月合肥高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)管理委員會(huì)公開招考60名工作人員筆試歷年參考題庫考點(diǎn)剖析附解題思路及答案詳解
- 2025年第三屆天揚(yáng)杯建筑業(yè)財(cái)稅知識(shí)競(jìng)賽題庫附答案(601-700題)
- 2025年四川綿陽市投資控股(集團(tuán))有限公司招聘筆試參考題庫附帶答案詳解
- (二調(diào))棗莊市2025屆高三模擬考試歷史試卷(含答案)
- 上海市普陀區(qū)2024-2025學(xué)年高三下學(xué)期二模地理試題(含答案)
- 【初中語文】第11課《山地回憶》課件+2024-2025學(xué)年統(tǒng)編版語文七年級(jí)下冊(cè)
評(píng)論
0/150
提交評(píng)論