




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
外文翻譯PAGEPAGE1建筑模型外文翻譯文獻建筑模型外文翻譯文獻(文檔含中英文對照即英文原文和中文翻譯)原文:LateralstiffnessestimationinframesanditsimplementationtocontinuummodelsforlinearandnonlinearstaticanalysisAbstractContinuummodelisausefultoolforapproximateanalysisoftallstructuresincludingmoment-resistingframesandshearwall-framesystems.Incontinuummodel,discretebuildingsaresimplifiedsuchthattheiroverallbehaviorisdescribedthroughthecontributionsofflexuralandshearstiffnessesatthestorylevels.Therefore,accuratedeterminationoftheselateralstiffnesscomponentsconstitutesoneofthemajorissuesinestablishingreliablecontinuummodelseveniftheproposedsolutionisanapproximationtoactualstructuralbehavior.Thisstudyfirstexaminesthepreviousliteratureonthecalculationoflateralstiffnesscomponents(i.e.flexuralandshearstiffnesses)throughcomparisonswithexactresultsobtainedfromdiscretemodels.Anewmethodologyforadaptingtheheightwisevariationoflateralstiffnesstocontinuummodelispresentedbasedonthesecomparisons.Theproposedmethodologyisthenextendedforestimatingthenonlinearglobalcapacityofmomentresistingframes.Theverificationsthatcomparethenonlinearbehaviorofrealsystemswiththoseestimatedfromtheproposedproceduresuggestitseffectiveusefortheperformanceassessmentoflargebuildingstocksthatexhibitsimilarstructuralfeatures.Thisconclusionisfurtherjustifiedbycomparingnonlinearresponsehistoryanalysesofsingle-degree-of-freedom(sdof)systemsthatareobtainedfromtheglobalcapacitycurvesofactualsystemsandtheirapproximationscomputedbytheproposedprocedure.KeywordsApproximatenonlinearmethods·Continuummodel·Globalcapacity·Nonlinearresponse·Framesanddualsystems1IntroductionReliableestimationofstructuralresponseisessentialintheseismicperformanceassessmentanddesignbecauseitprovidesthemajorinputwhiledescribingtheglobalcapacityofstructuresunderstronggroundmotions.Withtheadventofcomputertechnologyandsophisticatedstructuralanalysisprograms,theanalystsarenowabletorefinetheirstructuralmodelstocomputemoreaccuratestructuralresponse.However,attheexpenseofcapturingdetailedstructuralbehavior,theincreasedunknownsinmodelingparameters,whencombinedwiththeuncertaintyingroundmotions,maketheinterpretationsofanalysisresultscumbersomeandtimeconsuming.Complexstructuralmodelingandresponsehistoryanalysiscanalsobeoverwhelmingforperformanceassessmentoflargebuildingstocksorthepreliminarydesignofnewbuildings.Thecontinuummodel,inthissense,isanaccomplishedapproximatetoolforestimatingtheoveralldynamicbehaviorofmomentresistingframes(MRFs)andshearwall-frame(dual)systems.Continuummodel,asanapproximationtocomplexdiscretemodels,hasbeenusedextensivelyintheliterature.Westergaard(1933)usedequivalentundampedshearbeamconceptformodelingtallbuildingsunderearthquakeinducedshocksthroughtheimplementationofshearwavespropagatinginthecontinuummedia.Later,thecontinuousshearbeammodelhasbeenimplementedbymanyresearchers(e.g.Iwan1997;GülkanandAkkar2002;Akkaretal.2005;ChopraandChintanapakdee2001)toapproximatetheearthquakeinduceddeformationdemandsonframesystems.TheideaofusingequivalentshearbeamswasextendedtothecombinationofcontinuousshearandflexuralbeamsbyKhanandSbarounis(1964).HeidebrechtandStaffordSmith(1973)definedacontinuummodel(hereinafterHS73)forapproximatingtallshearwall-frametypestructuresthatisbasedonthesolutionofafourthorderpartialdifferentialequation(PDE).Miranda(1999)presentedthesolutionofthisPDEunderasetoflateralstaticloadingcasestoapproximatethemaximumroofandinterstorydriftdemandsonfirst-modedominantstructures.Later,HeidebrechtandRutenberg(2000)showedadifferentversionofHS73methodtodrawtheupperandlowerboundsofinterstorydriftdemandsonframesystems.MirandaandTaghavi(2005)usedtheHS73modeltoacquiretheapproximatestructuralbehaviorupto3modes.Asafollowupstudy,MirandaandAkkar(2006)extendedtheuseofHS73tocomputegeneralizeddriftspectrumwithhighermodeeffects.Continuummodelisalsousedforestimatingthefundamentalperiodsofhigh-risebuildings(e.g.DymandWilliams2007).Morerecently,Gengshuetal.(2008)studiedthesecondorderandbucklingeffectsonbuildingsthroughtheclosedformsolutionsofcontinuoussystems.Whilethetheoreticalapplicationsofcontinuummodelareabundantasbrieflyaddressedabove,itspracticalimplementationisratherlimitedasthedeterminationofequivalentflexural(EI)andshear(GA)stiffnessestorepresenttheactuallateralstiffnessvariationindiscretesystemshavenotbeenfullyaddressedintheliterature.ThisflawhasalsorestrictedtheefficientuseofcontinuummodelbeyondelasticlimitsbecausethenonlinearbehaviorofcontinuummodelsisdictatedbythechangesinEIandGAinthepost-yieldingstageThispaperfocusesontherealisticdeterminationoflateralstiffnessforcontinuummodels.EIandGAdefinedindiscretesystemsareadaptedtocontinuummodelsthroughananalyticalexpressionthatconsiderstheheightwisevariationofboundaryconditionsindiscretesystems.TheHS73modelisusedasthebasecontinuummodelsinceitiscapableofrepresentingthestructuralresponsebetweenpureflexureandshearbehavior.Theproposedanalyticalexpressionisevaluatedbycomparingthedeformationpatternsofcontinuummodelandactualdiscretesystemsunderthefirst-modecompatibleloadingpattern.TheimprovementsonthedeterminationofEIandGAarecombinedwithasecondprocedurethatisbasedonlimitstateanalysistodescribetheglobalcapacityofstructuresrespondingbeyondtheirelasticlimits.Illustrativecasestudiesindicatethatthecontinuummodel,whenusedtogetherwiththeproposedmethodologies,canbeausefultoolforlinearandnonlinearstaticanalysis.2ContinuummodelcharacteristicsTheHS73modeliscomposedofaflexuralandshearbeamtodefinetheflexural(EI)andshear(GA)stiffnesscontributionstotheoveralllateralstiffness.ThemajormodelparametersEIandGAarerelatedtoeachotherthroughthecoefficientα(Eq.1).Asαgoestoinfinitythemodelwouldexhibitpuresheardeformationwhereasα=0indicatespureflexuraldeformation.NotethatitisessentialtoidentifythestructuralmembersofdiscretebuildingsfortheirflexuralandshearbeamcontributionsbecausetheoverallbehaviorofcontinuummodelisgovernedbythechangesinEIandGA.Equation2showsthecomputationofGAforasinglecolumnmemberinHS73.ThevariablesIcandhdenotethecolumnmomentofinertiaandstoryheight,respectively.TheinertiatermsIb1andIb2thataredividedbythetotallengthsl1andl2,respectively,definetherelativerigiditiesofbeamsadjoiningtothecolumnfromtop(seeFig.3inthereferredpaper).Equation2indicatesthatGA(shearcomponentoftotallateralstiffness)iscomputedasafractionofflexuralstiffnessofframesorientedinthelateralloadingdirection.Accordingly,theflexuralpart(EI)oftotalstiffnessiscomputedeitherbyconsideringtheshear-wallmembersintheloadingdirectionand/orothercolumnsthatdonotspanintoaframeinthedirectionofloading.Thisassumptionworksfairlywellfordualsystems.However,itmayfailinMRFsbecauseitwilldiscardtheflexuralcontributionsofcolumnsalongtheloadingdirectionandwilllumptotallateralstiffnessintoGA.Essentially,thisapproximationwillreducetheentireMRFtoashearbeamthatwouldbeaninaccuratewayofdescribingMRFbehaviorunlessallbeamsareassumedtoberigid.Tothebestofauthors’knowledge,studiesthatuseHS73modeldonotdescribethecomputationofαindepthwhilerepresentingdiscretebuildingsystemsascontinuummodels.Inmostcasesthesestudiesassigngenericαvaluesfordescribingdifferentstructuralbehaviorspanningfrompureflexuretopureshear1.Thisapproachisdeemedtoberationaltorepresenttheoreticalbehaviorofdifferentstructures.However,theabovehighlightedfactsaboutthecomputationoflateralstiffnessrequirefurtherinvestigationtoimprovetheperformanceofHS73modelwhilesimplifyinganactualMRFasacontinuummodel.Inthatsense,itisworthwhiletodiscusssomeimportantstudiesonthelateralstiffnessestimationofframes.ThesecouldbeusefulfortheenhancedcalculationsofEIandGAtodescribethetotallateralstiffnessincontinuumsystems.3LateralstiffnessapproximationsforMRFsTherearenumerousstudiesonthedeterminationoflateralstiffnessinMRFs.ThemethodsproposedinMuto(1974)andHosseiniandImagh-e-Naiini(1999)(hereinafterM74andHI99,respectively)arepresentedinthispaperandtheyarecomparedwiththeHS73approachforitsenhancementindescribingthelateraldeformationbehaviorofstructuralsystems.Equation3showsthetotallateralstiffness,k,definitionofM74foracolumnatanintermediatestory.TheparametersIc,h,Ib1,Ib2,l1andl2havethesamemeaningsasinEq.(2).NotethatEq.(2)proposedinHS73isasimplifiedversionofEq.(3)foraunitrotation.Theformerexpressionassumesthatthedimensionsofbeamsspanningintothecolumnfromtoparethesameasthosespanningintothecolumnfrombottom.However,Eqs.(2)and(3)exhibitasignificantconceptualdifference:theHS73approachinterpretstheresultingstiffnesstermastheshearcontributionwhereasM74considersitasthetotallateralstiffness.TheHI99methoddefinesthelateralstiffnessofMRFsthroughanequivalentsimplesystemthatconsistsofsub-modulesofone-bay/one-storyframes.Eachsub-modulerepresentsastoryintheoriginalstructureandthecolumninertia(Ic)ofasub-moduleiscalculatedbytakinghalfofthetotalmomentofinertiaofallcolumnsintheoriginalstory.Therelativerigiditiesofupper(ku)andlower(kl)beamsinasub-modulearecalculatedbysummingalltherelativebeamrigiditiesatthetopandbottomoftheoriginalstory,respectively.ThetotallateralstiffnessofastorybyHI99isgiveninEq.(5)Theparameterkcandhdenotetherelativerigidityandlengthofthecolumninthesubmodule,respectively.Thetotallateralstiffnessatgroundstoryiscomputedbyassigningrelativelylargestiffnessvaluestokltorepresentthefixed-baseconditions.Equation(5)hasasimilarfunctionalformatasEqs.(2)and(3).Sincethelateralstiffnesscomputedstandsforthetotallateralstiffness,itexhibitsamoresimilartheoreticalframeworktoM74.DiscussionspresentedaboveindicatethatbothM74andHI99considerthevariationsinlateralstiffnessatthegroundstoryduetofixed-baseboundaryconditions.However,theyignorethefreeendconditionsatthetopstory.Asamatteroffact,Schultz(1992)pointedthatlateralstiffnesschangesalongthebuildingheightmightbeabruptatboundarystories.TheboundarystoriesdefinedbySchultz(1992)notonlyconsistofgroundandtopfloorsbutalsothe2ndstorybecausethepropagationoffixed-baseconditionsabovethegroundstorylevelisprominentatthe2ndstoryaswell.AlthoughSchultz(1992)proposedcorrectionfactorsforboundarystoriesofsomespecificcases,hedoesnotgiveageneralexpressionthataccountsforthestiffnesschangesatboundarystories.References1、AkkarS,YazganU,GülkanP(2005)Driftestimatesinframebuildingssubjectedtonear-faultgroundmotions.JStructEngASCE131(7):1014–10242、AmericanSocietyofCivilEngineers(ASCE)(2007)Seismicrehabilitationofexistingbuildings:ASCEstandard,reportno.ASCE/SEI41-06.Reston,Virginia3、AppliedTechnologyCouncil(ATC)(2004)FEMA-440Improvementofnonlinearstaticseismicanalysisprocedures,ATC-55projectreport.preparedbytheAppliedTechnologyCouncilfortheFeeralEmergencyManagementAgency,Washington,DC4、BlumeJA(1968)Dynamiccharacteristicsofmulti-storybuildings.JStructDivASCE94(2):377–4025、BorziB,PinhoR,CrowleyH(2008)Simplifiedpushover-basedvulnerabilityanalysisforlarge-scaleassessmentofRCbuildings.EngStruct30:804–820翻譯:框架橫向剛度估計和橫向剛度線性與非線性的連續模型的靜力分析吐哈埃爾奧盧?思南阿卡爾收到日期:2010年4月23日/發表日期:2010年11月17日?施普林格科學商業媒體B.V.2010+摘要:連續模型是高層結構的近似分析,包括抗彎框架剪力墻系統都是非常有用的工具。在連續介質模型,離散的建筑物被簡化,這樣他們的整體性能可以通過樓層層面的彎曲和剪切剛度來描述。因此,這些組件橫向剛度的準確測定,是建立可靠的連續模型的主要問題之一,即提出的解決方案是一個實際的近似結構。本研究首先探討通過與精確結果的比較,通過對橫向剛度組件(即彎曲和剪切剛度)以往文獻的計算來獲得離散模型。基于這些比較,一種適用于橫向剛度連續模型變化的新方法被提出來。建議的方法是進行延伸來估計非線性抗彎矩框架的整體能力。該核查是比較與建議的過程,而估計的實際系統的非線性特性表明其對大型建筑表現出類似的結構特征,并被有效利用。這一結論是通過比較,來進一步說明單自由度的非線性特性歷史分析(單自由度),它們從實際系統和擬議的程序的近似計算來得到系統的整體能力曲線。關鍵詞:近似非線性方法、連續模型、整體能力、非線性特性、框架和雙系統吐哈埃爾奧盧目前留在中東技術大學研究生學院。介紹結構特性的可靠估計是抗震性能評估和設計必不可少,因為它提供主要數據在描述在強地震時結構的整體能力。隨著計算機技術和先進的結構分析程序的出現,分析家現在能夠改進其結構模型來計算更準確的結構反應。然而,在捕捉詳細的結構性能為前提,模型參數未知的增加與地面運動相結合的不確定性,會使分析結果繁瑣與解釋費時。復雜的結構模型和反應歷史分析,也可用于大型建筑群性能評估或新建筑物的初步設計的確定。連續模型,在這個意義上,是估計抗彎矩框架(MRFs)和剪力墻框架(dual)系統近似整體動態反應的工具。連續模型,近似的作為一種復雜的離散模型,已被廣泛使用在文獻中。Westergaard(1933)是用于地震引起的沖擊下,高層建筑模型通過連續介質傳播橫波方式的等效阻尼剪切梁的概念。后來,連續剪切梁模型由許多研究者實現了(如伊萬1997年古坎和阿卡爾2002;阿卡爾等人,2005年。普拉和柴可珀達2001)模擬地震引起的變形對框架體系的作用。可翰和貝冉斯(1964)采用等效剪切梁的理念擴展到連續剪切和彎曲梁的組合。黑布瑞去和斯塔福德史密斯(1973)所界定連續的結構模型(以下簡稱HS73),是用一個四階偏微分方程(PDE)來解決高層剪力墻框架模型,雖然連續介質模型的理論應用建立在簡要討論上,其實際執行情況是相當有限,因為等效彎曲測定和剪剛度測定,代表的實際離散系統橫向剛度變化在文獻里沒有得到充分處理。這一缺陷也限制了,因為超出彈性極限的非線性行為的連續模型的有效利用,連續模型是取決于在后階段EI和GA的變化。本文的重點是橫向剛度連續模型的定義。EI和GA在離散系統中的定義,是邊界條件下離散系統的變化模型的解析表達式。該HS73模型作為基礎連續模型,是因為它表現了純彎曲和剪切行為,能代表結構反應的能力。建議的解析表達式是通過比較在第一個模式兼容加載模式下的,連續模型和實際離散系統的變形模式。在EI和GA測定的改善,在結合了第二個過程的極限狀態分析的基礎上,描述了結構承載超出其彈性極限后的整體能力。說明案例研究表明,連續模型,使用時與所建議的方法一起,可以成為線性和非線性靜力分析的有用工具。連續模型的特點該HS73模型是由彎曲和剪切梁組成,來定義彎曲(EI)及剪切(GA)剛度的,從而確定整體剛度橫向剛度。主要的模型參數EI和GA有關,通過彼此的(公式1)系數α相互聯系。以α趨于無窮模型將展出純剪切變形而α=0表示純彎曲變形。注意的事,必須查明離散建筑物的結構構件的彎曲和剪切,因為連續模型的整體行為是受在EI和GA的變化而決定。公式2表示在HS73的一系列計算。變量Ic和H分別表示的慣性和層高。Ib1的慣性和由L1和L2,分別確定相對僵化的總長度除以Ib2,梁毗鄰自頂柱(見圖。在3提到文件)。公式2表明,GA(占總數的橫向剛度剪切組件)是一個橫向載荷方向框架抗彎剛度的計算分數。彎曲部分(EI)的總剛度計算或者考慮在剪力墻加載方向/或不成為一個框架中其它柱跨度方向的負荷載。這個假設對雙系統效果非常好。但是,它可能會失敗,因為它會在抗彎矩框架上沿載荷方向,將柱并到GA橫向剛度。事實上,這種近似將減少整個抗彎矩框架到剪力梁,將會不準確的描述抗彎矩框架反應,除非所有的梁被認為是剛性的。就作者的所知,研究使用HS73模型不僅詳細描述了α的計算,而且把離散建筑系統作為連續模型。在大多數情況下,這些研究不同結構分配過程,從純彎曲跨越到純剪通用的α值。這種方法被認為是合理的,是代表不同結構理論的行為。不過,以上強調的事實,即有關的橫向剛度計算需要進一步調查,以提高模型的性能,同時簡化HS73實際抗彎矩框架作為一個連續模型。在這個意義上說,的關于框架側向剛度估計的一些重要研究是值得討論的。這可能是關于GA和EI有用的增強計算方法,用于描述連續系統的總橫向剛度。抗彎矩框架的近似橫向剛度這里有很多研究關于抗彎矩框架橫向剛度的測定。Muto(1974)和Hosseini和Imagh-e-Naiini(1999)所提出的方法(以下分別簡稱M74和HI99)基于本文件和他們相對于HS73途徑提高了其在描述系統結構的側向變形。公式3顯示總橫向剛度K的M74,是一根柱在一個中間樓層的值。參數lchIb1,Ib2,L1和L2在公式2中的具相同涵義。公式(2)是在HS73提出的一個關于公式(3)的簡化版本。前者表達假定頂部柱之間梁的跨度和底部柱之間梁的跨度相同。不過,公式(2)及(3)表現出一個重大的概念區別:M74認為它為總計的橫向剛度,HS73同樣地解釋為剪切作用的術語。該方法HI99通過一個簡單的系統把抗彎框架的橫向剛度,定義為是由一層樓高的框架的子模板組成。每個子模塊表現為原結構的一個樓層,而且子模塊的柱剛度,由最初的層所有柱的總計剛度的一半來計算。在一個子模塊的上面的(ku)、比較低的(kl)梁的相對剛度,由最初層的頂和底部梁的剛度計算而得來。樓層總的橫向剛度在公式5中由HI99給出。參數架KC和h分別表示了柱在子模塊中的相對剛性和長度。第一層總橫向剛度的計算方法是用較大的那個剛度值,分配到kl來表示固定的基礎條件。具有類似功能的公式(2)及公式(3)。由橫向剛度計算的總橫向剛度,它表現出一種更類似于M74的理論框架。上面介紹的討論表明,這兩個M74和HI99考慮橫向剛度從第一層到固定基地邊界的變化。但是,他們忽視了在頂層自由端的條件。由于事實上,舒爾茨(1992)指出,建筑物的橫向剛度沿高度變化可能發生在邊界層。根據上述情況,舒爾茨(1992)的邊界層定義不僅包括地面和頂層也包括第二層。雖然舒爾茨(1992)為某些特定情況下提出了邊界層的修正系數。他不用一般表達式來計算邊界層上剛度的變化。參考文獻AkkarS,YazganU,GülkanP(2005)Driftestimatesinframebuildingssubjectedtonear-faultgroundmotions.JStructEngASCE131(7):1014–1024AmericanSocietyofCivilEngineers(ASCE)(2007)Seismicrehabilitationofexistingbuildings:ASCEstandard,reportno.ASCE/SEI41-06.Reston,VirginiaAppliedTechnologyCouncil(ATC)(2004)FEMA-440Improvementofnonlinearstaticseismicanalysispro-cedures,ATC-55projectreport.preparedbytheAppliedtechnologyCouncilfortheFederalEmergencyManagementAgency,Washington,DC.4、BlumeJA(1968)Dynamiccharacteristicsofmulti-storybuildings.JStructDivASCE94(2):377–402BorziB,PinhoR,CrowleyH(2008)Simpli?edpushover-basedvulnerabilityanalysisforlarge-scaleassessmentofRCbuildings.EngStruct30:804–820外文原文:TheeffectsofsupplementarycementingmaterialsinmodifyingtheheatofhydrationofconcreteYunusBallimPeterC.GrahamReceived:23February2008/Accepted:17September2008/Publishedonline:23September2008AbstractThispaperisintendedtoprovideguidanceontheformandextenttowhichsupplementarycementingmaterials,incombinationwithPortlandcement,modifiestherateofheatevolutionduringtheearlystagesofhydrationinconcrete.Inthisinvestigation,concreteswerepreparedwithflyash,condensedsilicafumeandgroundgranulatedblastfurnaceslag,blendedwithPortlandcementinproportionsrangingfrom5%to80%.Theseconcretesweresubjectedtoheatofhydrationtestsunderadiabaticconditionsandtheresultswereusedtoassessandquantifytheeffectsofthesupplementarycementingmaterialsinalteringtheheatrateprofilesofconcrete.Thepaperalsoproposesasimplifiedmathematicalformoftheheatratecurveforblendedcementbindersinconcretetoallowadesignstageassessmentofthelikelyearly-agetime–temperatureprofilesinlargeconcretestructures.Suchanassessmentwouldbeessentialinthecaseofconcretestructureswherethepotentialforthermallyinducedcrackingisofconcern.Keywords:Heatofhydration_Flyash_Silicafume_Slag_Concrete1IntroductionSupplementarycementingmaterials,suchasgroundgranulatedblastfurnaceslag(GGBS),flyash(FA)andcondensedsilicafume(CSF),arenowroutinelyusedinstructuralconcrete.Usedjudiciously,thesematerialsareabletoprovideimprovementsintheeconomy,microstructureofcementpasteaswellastheengineeringpropertiesanddurabilityofconcrete.Theyalsoaltertherateofhydrationandcaninfluencethetime–temperatureprofileinlargeconcreteelements.Thispaperisaimedatanimprovedunderstandingofthewayinwhichtheearly-ageheatofhydrationcharacteristicsofconcretearealteredbytheadditionofsupplementarycementingmaterials(SCM),incombinationwithPortlandcement,asapartofthebinder.Importantly,inthedesignandconstructionoflargeconcreteelements,wheretheextentoftemperatureriseisofconcern,ourabilitytoreliablypredicttheearly-agetemperaturedifferentialsintheconcreterequiresacarefulunderstandingoftheratesatwhichheatisevolvedduringhydration[1–3].Inessence,theintentionofthispaperistoprovideguidanceontheformoftheheat-ratefunctionforconcretescontainingsupplementarycementingmaterials.Thisisessentialinputinformationinthedesignandconstructionoflargedimensionand/orhighstrengthstructureswherethermalstrainsarelikelytoleadtodeleteriouscrackingand/orlossofdurability.Intheinvestigationreportedhere,concretesamplescontainingcombinationsofPortlandcementwithGGBS,FAorCSFweretestedinanadiabaticcalorimeterinordertodeterminetheirheatofhydrationcharacteristics.Thetestprogrammewaslimitedtobinaryblendsofthematerials,i.e.,eachtestwaslimitedtoacombinationofPortlandcementandonesupplementarymaterialandallconcreteswerepreparedatthesamewater:binder(w/b)ratio.Foreachtypeofsupplementarymaterial,concreteswerepreparedwithsupplementarymaterialreplacingbetween5%and80%ofthePortlandcement,dependingonthetypeofSCM.Concretesampleswithavolumeofapproximately1lweretestedintheadiabaticcalorimeter.Theadiabaticcalorimeterthatwasusedinthetestprogrammeisbasedontheprincipleofsurroundingaconcretesamplewithanenvironmentinwhichthetemperatureiscontrolledtomatchthetemperatureofthehydratingconcreteitself,thusensuringthatnoheatistransferredtoorfromthesampleandtheriseintemperaturemeasuredissolelyduetotheheatMevolvedbythehydrationprocess.ThiscalorimeterhasbeendescribedindetailbyGibbonetal.[4].SincetherateofevolutionofheatduringtheMhydrationofcementitiousmaterialsisinfluencedbyMthetemperatureatwhichthereactiontakesplace,thereisnouniqueadiabaticheatratecurveforaparticularcementorcombinationofcementitiousmaterials.Comparisonsoftheheatrateperformancesofmaterialsmust,therefore,bemadeonthebasisofthedegreeofhydrationormaturity.Inthispaper,theresultsareexpressedintermsofmaturityort20h,whichreferstotheequivalenttimeofhydrationat20_C.Thisformofexpressionoftheheatratefunctionandthejustificationforitsuse,isdescribedbyBallimandGraham[1].2ConcretematerialsandmixturesConcretematerialswhicharecommonlyusedandreadilyavailableinSouthAfricawereusedinthesetests.ThePortlandcementcompliedwithSABSEN197-1,typeCEMIclass42.5[5]andtheGGBS,flyashandsilicafumecompliedwithSABS1491Parts1,2and3[6–8],respectively.TheoxidecontentsofthebindermaterialsweredeterminedbyXRFanalysisandtheresultsareshowninTable1.Therangeofreplacementlevelsbyeachofthethreesupplementarymaterialsused,togetherwiththeconcretemixtureproportions.Theconcretemixtureproportionswerekeptthesamethroughout,exceptthatthecompositionandrelativeproportionofthebinderwaschangedasrequired.Alltheconcretesthereforehadaw/bratioofapproximately0.67andthewatercontentwassufficienttocompacttheconcretebymanuallystampingthesampleholder.Allthemixturecomponents,includingthewater,werestoredinthesameroomasthecalorimeteratleast24hbeforemixing.Thisallowedthetemperatureofthematerialstoequilibratetotheroomtemperature,whichwascontrolledat19±1_C.A1.2lsampleofeachconcretewaspreparedbymanualmixinginasteelbowlandtheadiabatictestwasstartedwithin15minafterthewaterwasaddedtothemixture.Allthetestswerestartedattemperaturesbetween18and20_Candtemperaturemeasurementinthecalorimeterwascontinuedforapproximately4days.Thesilicasandusedintheconcreteswasobtainedinthreesizefractionsandthesewererecombinedasneededforthemixingoperationtoensureauniformsandgradingforeachconcrete.Thestoneusedintheconcretewasawashedsilica,largelysingle-sizedand9.5mminnominaldimension.3ConclusionsTheintentionoftheprojectreportedinthispaperwasNtoquantifytheeffectsofsupplementarycementingmaterialsontherateofheatevolutioninPortlandcementconcretes.Inparticular,thefocuswasonprovidinginformationontherateofheatevolutioninawaythatwouldallowimprovedpredictionoftheinternalconcretetemperatureprofilesduringconstructionoflargeorhigh-strengthconcreteelements.Inthisregardandgiventheparametersoftheconcretesused,thestudyhasshownthat:ThepeakrateofheatevolutioninGGBSorFAblendedbindersdecreaseslinearlywithincreasingadditionofGGBSorFA;ExceptforFAreplacementsashighas80%,thetimetoreachpeakratesofheatevolutionisreducedwithincreasedproportionsofGGBSorFAinthebinders.Iftheproportionofflyashisincreasedto80%,thereisasignificantincreaseinthetimerequiredtoreachthepeakrateofheatevolution.Uptoareplacementlevelof15%,theadditionofCSFinPortlandcementbindersdoesnotsignificantlyaltertheheat-rateprofileofconcrete.Themostsignificanteffectnotedwasanapproximately9%increaseinthepeakrateofhydrationwhen15%ofthePortlandcementwasreplacedbyCSF.However,theadditionof10%and15%CSFhadamarkedeffectinreducingthetimetoreachthepeakrateofhydration.ThepresenceoftheSCM’sassessedinthisinvestigationhavetheeffectofstimulatingthehydrationoftheCEMIintheblendedbinderThisstimulatedhydrationresultsfromtheconsumptionofcalciumhydroxide,thedilutioneffectandhydrationnucleationsiteeffect.ThisstimulationofhydrationisstrongestwiththeadditionofCSF,moderateinthecaseofGGBSandweakinthecaseofFA.Intheabsenceofamorereliableheat-ratecurveforconcretecontainingsupplementarycementitiousmaterials,themodelproposedinEqs.6–8canbeusedtoprovideafirst-estimateofthetemperatureprofilesatthedesignstageofatemperature-sensitiveconcretestructure.References1.BallimY,GrahamPC(2003)Amaturityapproachtotherateofheatevolutioninconcrete.MagConcrRes55(3).doi:10.1680/macr.75712.KoendersEAB,vanBreugelK(1994)Numericalandexperimentaladiabatichydrationcurvedetermination.In:SpringenschmidR(ed)Thermalcrackinginconcreteatearlyages.E&FNSpon,London3.MaekawaK,ChaubeR,KishiT(1999)Modellingofconcreteperformance.SponPress,London4.GibbonGJ,BallimY,GrieveGRH(1997)Alowcost,computer-controlledadiabaticcalorimeterfordeterminingtheheatofhydr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年注冊會計師考試溝通能力試題及答案
- 2025年銀行從業資格證獨特視角試題及答案
- 證券投資流動性風險管理的試題及答案
- 剖析2024年項目管理專業人士考試內容試題及答案
- 2025年運用統計學分析市場趨勢試題及答案
- 國際金融理財師考試新挑戰試題及答案
- 微生物實驗室的最佳實踐與管理經驗試題及答案
- 寧夏中衛市本年度(2025)小學一年級數學部編版能力評測(上學期)試卷及答案
- 市級課題申報書格式
- 2025年證券從業證考試教育實務試題及答案
- 中醫內科學陽痿專家講座
- ZL50裝載機反轉六連桿工作裝置設計
- LY/T 2698-2016鐵皮石斛雜交育種技術規程
- 綜合性學習之對聯-中考語文二輪復習
- 實驗室生物安全程序文件
- 企業融資方式介紹課件
- 藥品生產監督管理辦法
- 福建省普通高中學生綜合素質學期評價表
- 五年級下冊數學課件 -4.1 用數對確定位置 ︳青島版 (共20張PPT)
- 柏拉圖分析案例
- 二襯帶模注漿施工方案
評論
0/150
提交評論