內蒙古北京八中烏蘭察布分校2024屆中考沖刺卷數學試題含解析_第1頁
內蒙古北京八中烏蘭察布分校2024屆中考沖刺卷數學試題含解析_第2頁
內蒙古北京八中烏蘭察布分校2024屆中考沖刺卷數學試題含解析_第3頁
內蒙古北京八中烏蘭察布分校2024屆中考沖刺卷數學試題含解析_第4頁
內蒙古北京八中烏蘭察布分校2024屆中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古北京八中烏蘭察布分校2024學年中考沖刺卷數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數是()A.25° B.35° C.45° D.65°2.函數y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤33.若kb<0,則一次函數的圖象一定經過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限4.|﹣3|的值是()A.3 B. C.﹣3 D.﹣5.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定6.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發,走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發的時間(分鐘)之間的關系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米7.一個幾何體的三視圖如圖所示,根據圖示的數據計算出該幾何體的表面積()A.65π B.90π C.25π D.85π8.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.9.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=110.四個有理數﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,DE平分∠BDC交BC于點E,則=.12.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.13.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側面積為_____cm1.14.如圖,已知點C為反比例函數上的一點,過點C向坐標軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為___________.15.滿足的整數x的值是_____.16.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側,連接BD,交AC于點O,取AC,BD的中點E,F,連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.17.在一張直角三角形紙片的兩直角邊上各取一點,分別沿斜邊中點與這兩點的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經過A、C兩點,與AB邊交于點D.(1)求拋物線的函數表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.①求S關于m的函數表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.19.(5分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當△ABO是任意三角形時,設∠OAD=α,∠OBC=β,①試探究α、β之間存在的數量關系?②結論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.20.(8分)解方程組:.21.(10分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.22.(10分)先化簡,再求值:(x﹣3)÷(﹣1),其中x=﹣1.23.(12分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.24.(14分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

如圖,過點C作CD∥a,再由平行線的性質即可得出結論.【題目詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【題目點撥】本題考查了平行線的性質與判定,根據題意作出輔助線,構造出平行線是解答此題的關鍵.2、B【解題分析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.3、D【解題分析】

根據k,b的取值范圍確定圖象在坐標平面內的位置關系,從而求解.【題目詳解】∵kb<0,∴k、b異號。①當k>0時,b<0,此時一次函數y=kx+b的圖象經過第一、三、四象限;②當k<0時,b>0,此時一次函數y=kx+b的圖象經過第一、二、四象限;綜上所述,當kb<0時,一次函數y=kx+b的圖象一定經過第一、四象限。故選:D【題目點撥】此題考查一次函數圖象與系數的關系,解題關鍵在于判斷圖象的位置關系4、A【解題分析】分析:根據絕對值的定義回答即可.詳解:負數的絕對值等于它的相反數,故選A.點睛:考查絕對值,非負數的絕對值等于它本身,負數的絕對值等于它的相反數.5、C【解題分析】

因為R不動,所以AR不變.根據三角形中位線定理可得EF=AR,因此線段EF的長不變.【題目詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【題目點撥】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.6、D【解題分析】

根據圖中信息以及路程、速度、時間之間的關系一一判斷即可.【題目詳解】甲的速度==70米/分,故A正確,不符合題意;設乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【題目點撥】本題考查一次函數的應用,行程問題等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題.7、B【解題分析】

根據三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計算出母線長,然后求底面積與側面積的和即可.【題目詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【題目點撥】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了三視圖.8、B【解題分析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B9、D【解題分析】試題分析:x4x4=x8(同底數冪相乘,底數不變,指數相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術平方根.10、D【解題分析】解:∵-1<-1<0<2,∴最小的是-1.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、3-【解題分析】試題分析:因為△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因為BD平分∠ABC交AC于點D所以∠ABD=∠CBD=36°=∠A因為DE平分∠BDC交BC于點E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根據黃金三角形的性質知,BCAC=5-1EC=所以EC考點:黃金三角形點評:黃金三角形是一個等腰三角形,它的頂角為36°,每個底角為72°.它的腰與它的底成黃金比.當底角被平分時,角平分線分對邊也成黃金比,12、【解題分析】

首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【題目詳解】如圖,設與AD交于N,EF與AD交于M,根據折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【題目點撥】本題考查了折疊的性質,全等三角形的判定與性質,三角函數的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數形結合思想與方程思想的應用.13、【解題分析】分析:根據圓錐的側面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側面積的計算:圓錐的側面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).14、1【解題分析】

解:由于點C為反比例函數上的一點,則四邊形AOBC的面積S=|k|=1.故答案為:1.15、3,1【解題分析】

直接得出2<<3,1<<5,進而得出答案.【題目詳解】解:∵2<<3,1<<5,∴的整數x的值是:3,1.故答案為:3,1.【題目點撥】此題主要考查了估算無理數的大小,正確得出接近的有理數是解題關鍵.16、.【解題分析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據正方形的性質得BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據BD為正方形的對角線可得出BD=,BF=BD=,EF==.【題目詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【題目點撥】本題考查了正方形的性質與全等三角形的性質,解題的關鍵是熟練的掌握正方形與全等三角形的性質與應用.17、45或1【解題分析】

先根據題意畫出圖形,再根據勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【題目詳解】①如圖:因為AC=22+4點A是斜邊EF的中點,所以EF=2AC=45,②如圖:因為BD=32點D是斜邊EF的中點,所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【題目點撥】此題考查了圖形的剪拼,解題的關鍵是能夠根據題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.三、解答題(共7小題,滿分69分)18、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解題分析】

(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;

(2)①先用m表示出QE的長度,進而求出三角形的面積S關于m的函數;

②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【題目詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),滿足條件的點F共有四個,坐標分別為F1(,8),F2(,4),F3(,6+),F4(,6﹣).【題目點撥】本題考查二次函數的綜合應用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數形結合數學思想的運用,同學們要加強訓練,屬于中檔題.19、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解題分析】

(1)作OH⊥AB于H,根據線段垂直平分線的性質得到OD=OA,OB=OC,證明△OCE≌△OBH,根據全等三角形的性質證明;(2)證明△OCD≌△OBA,得到AB=CD,根據直角三角形的性質得到OE=CD,證明即可;(3)①根據等腰三角形的性質、三角形內角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據平行四邊形的判定和性質、全等三角形的判定和性質證明.【題目詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【題目點撥】本題是四邊形的綜合題,考查了線段垂直平分線的性質、全等三角形的判定和性質以及直角三角形斜邊上的中線性質、平行四邊形的判定與性質等知識;熟練掌握平行四邊形的判定與性質,證明三角形全等是解題的關鍵.20、【解題分析】

方程組整理后,利用加減消元法求出解即可.【題目詳解】解:方程組整理得:①+②得:9x=-45,即x=-5,把x=-代入①得:解得:則原方程組的解為【題目點撥】本題主要考查二元一次方程組的解法,二元一次方程組的解法有兩種:代入消元法和加減消元法,根據題目選擇合適的方法.21、(1)證明見解析;(1).【解題分析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據矩形的性質求出OC=OD,根據菱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論