




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省蘇北地區達標名校中考押題數學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.=()A.±4 B.4 C.±2 D.22.如圖,,交于點,平分,交于.若,則
的度數為()
A.35o B.45o C.55o D.65o3.已知x=1是方程x2+mx+n=0的一個根,則代數式m2+2mn+n2的值為()A.–1B.2C.1D.–24.據資料顯示,地球的海洋面積約為360000000平方千米,請用科學記數法表示地球海洋面積面積約為多少平方千米()A. B. C. D.5.如圖1,在矩形ABCD中,動點E從A出發,沿AB→BC方向運動,當點E到達點C時停止運動,過點E做FE⊥AE,交CD于F點,設點E運動路程為x,FC=y,如圖2所表示的是y與x的函數關系的大致圖象,當點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.6.某大型企業員工總數為28600人,數據“28600”用科學記數法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×1047.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.48.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°9.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.10.若,則()A. B. C. D.11.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<1012.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數解C.當時,方程有兩個相等的實數解D.當時,方程總有兩個不相等的實數解二、填空題:(本大題共6個小題,每小題4分,共24分.)13.規定用符號表示一個實數的整數部分,例如:,.按此規定,的值為________.14.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉一定的角度后得到△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為_____.15.某數學興趣小組在研究下列運算流程圖時發現,取某個實數范圍內的x作為輸入值,則永遠不會有輸出值,這個數學興趣小組所發現的實數x的取值范圍是_____.16.對于實數,我們用符號表示兩數中較小的數,如.因此,________;若,則________.17.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).18.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內接正六邊形ABCDEF;(要求:尺規作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.20.(6分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數m取何值,方程總有兩個實數根;(2)若方程有一個根的平方等于4,求m的值.21.(6分)某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.(1)若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數關系式,并求當x取何值時,商場獲利潤最大?22.(8分)先化簡,后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.23.(8分)甲、乙兩人在5次打靶測試中命中的環數如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數
眾數
中位數
方差
甲
8
8
0.4
乙
9
3.2
(2)教練根據這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環,那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).24.(10分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數據:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)25.(10分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?26.(12分)吳京同學根據學習函數的經驗,對一個新函數y=的圖象和性質進行了如下探究,請幫他把探究過程補充完整該函數的自變量x的取值范圍是.列表:x…﹣2﹣10123456…y…m﹣1﹣5n﹣1…表中m=,n=.描點、連線在下面的格點圖中,建立適當的平面直角坐標系xOy中,描出上表中各對對應值為坐標的點(其中x為橫坐標,y為縱坐標),并根據描出的點畫出該函數的圖象:觀察所畫出的函數圖象,寫出該函數的兩條性質:①;②.27.(12分)如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.請判斷:AF與BE的數量關系是,位置關系;如圖2,若將條件“兩個等邊三角形ADE和DCF”變為“兩個等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】
表示16的算術平方根,為正數,再根據二次根式的性質化簡.【題目詳解】解:,故選B.【題目點撥】本題考查了算術平方根,本題難點是平方根與算術平方根的區別與聯系,一個正數算術平方根有一個,而平方根有兩個.2、D【解題分析】分析:根據平行線的性質求得∠BEC的度數,再由角平分線的性質即可求得∠CFE的度數.詳解:又∵EF平分∠BEC,.故選D.點睛:本題主要考查了平行線的性質和角平分線的定義,熟知平行線的性質和角平分線的定義是解題的關鍵.3、C【解題分析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根據完全平方公式把m2+2mn+n2變形后代入計算即可.【題目詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【題目點撥】本題考查了方程的根和整體代入法求代數式的值,能使方程兩邊相等的未知數的值叫做方程的根.4、B【解題分析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:將360000000用科學記數法表示為:3.6×1.故選:B.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、B【解題分析】
易證△CFE∽△BEA,可得,根據二次函數圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【題目詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【題目點撥】本題考查了二次函數頂點問題,考查了相似三角形的判定和性質,考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關鍵.6、D【解題分析】
用科學記數法表示較大的數時,一般形式為a×10﹣n,其中1≤|a|<10,n為整數,據此判斷即可【題目詳解】28600=2.86×1.故選D.【題目點撥】此題主要考查了用科學記數法表示較大的數,一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關鍵7、A【解題分析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.8、B【解題分析】
解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B9、B【解題分析】
過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【題目詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【題目點撥】本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.10、D【解題分析】
等式左邊為非負數,說明右邊,由此可得b的取值范圍.【題目詳解】解:,
,解得故選D.【題目點撥】本題考查了二次根式的性質:,.11、D【解題分析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【題目點撥】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.12、C【解題分析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數解,當且時,方程有兩個不相等的實數解.綜上所述,說法C正確.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解題分析】
根據規定,取的整數部分即可.【題目詳解】∵,∴∴整數部分為4.【題目點撥】本題考查無理數的估值,熟記方法是關鍵.14、(,)【解題分析】
作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉性質知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【題目詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,
∵A(3,),
∴OC=3,AC=,
∵OB=6,
∴BC=OC=3,
則tan∠ABC==,
由旋轉可知,BO′=BO=6,∠A′BO′=∠ABO,
∴==,
設O′D=x,BD=3x,
由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
解得:x=或x=?(舍),
則BD=3x=,O′D=x=,
∴OD=OB+BD=6+=,
∴點O′的坐標為(,).【題目點撥】本題考查的是圖形的旋轉,熟練掌握勾股定理和三角函數是解題的關鍵.15、【解題分析】
通過找到臨界值解決問題.【題目詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數值越來越大,會有輸出值;當x<時,數值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【題目點撥】本題考查不等式的性質,解題的關鍵是理解題意,學會找到臨界值解決問題.16、2或-1.【解題分析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,17、。【解題分析】試題分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。18、1【解題分析】
本題首先由等邊三角形的性質及垂直定義得到∠DBE=60°,∠BEC=90°,再根據等腰三角形的性質可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據三角形內角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【題目詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【題目點撥】本題主要考查等腰三角形的性質及等邊三角形的性質及垂直定義,解題的關鍵是根據三角形內角和定理列出符合題意的簡易方程,從而求出結果.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2)證明見解析.【解題分析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【題目詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【題目點撥】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質.20、(1)證明見解析;(2)m的值為1或﹣2.【解題分析】
(1)計算根的判別式的值可得(m+1)2≥1,由此即可證得結論;(2)根據題意得到x=±2是原方程的根,將其代入列出關于m新方程,通過解新方程求得m的值即可.【題目詳解】(1)證明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴無論實數m取何值,方程總有兩個實數根;(2)解:∵方程有一個根的平方等于2,∴x=±2是原方程的根,當x=2時,2﹣2(m+3)+m+2=1.解得m=1;當x=﹣2時,2+2(m+3)+m+2=1,解得m=﹣2.綜上所述,m的值為1或﹣2.【題目點撥】本題考查了根的判別式及一元二次方程的解的定義,在解答(2)時要分類討論,這是此題的易錯點.21、(1)商店經營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【解題分析】
(1)根據“總利潤=每件的利潤×每天的銷量”列方程求解可得;
(2)利用(1)中的相等關系列出函數解析式,配方成頂點式,利用二次函數的性質求解可得.【題目詳解】解:(1)依題意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,經檢驗:x1=2,x2=8,答:商店經營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)依題意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴當x=5時,y取得最大值為2250元.答:y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【題目點撥】本題考查二次函數的應用和一元二次方程的應用,解題關鍵是由題意確定題目蘊含的相等關系,并據此列出方程或函數解析式.22、1【解題分析】
先進行同底數冪的乘除以及冪的乘方運算,再合并同類項得到化簡后的式子,將a的值代入化簡后的式子計算即可.【題目詳解】原式=a6﹣a6+a6=a6,當a=﹣1時,原式=1.【題目點撥】本題主要考查同底數冪的乘除以及冪的乘方運算法則.23、(1)填表見解析;(2)理由見解析;(3)變小.【解題分析】
(1)根據眾數、平均數和中位數的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數據的波動大小(即這批數據偏離平均數的大小)在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定.(3)根據方差公式求解:如果乙再射擊1次,命中8環,那么乙的射擊成績的方差變小.【題目詳解】試題分析:試題解析:解:(1)甲的眾數為8,乙的平均數=(5+9+7+10+9)=8,乙的中位數為9.故填表如下:平均數
眾數
中位數
方差
甲
8
8
8
0.4
乙
8
9
9
3.2
(2)因為他們的平均數相等,而甲的方差小,發揮比較穩定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環,平均數不變,根據方差公式可得乙的射擊成績的方差變小.考點:1.方差;2.算術平均數;3.中位數;4.眾數.24、3.05米.【解題分析】
延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【題目詳解】延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.考點:解直角三角形的應用.25、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解題分析】
(1)根據圖①可得出總工作量為370件,根據圖②可得出乙完成了220件,從而可得出甲5小時完成的工作量;(2)設y甲的函數解析式為y=kx+b,將點(0,0),(5,1)代入即可得出y甲與t的函數關系式;設y乙的函數解析式為y=mx(0≤t≤2),y=cx+d(2<t≤5),將點的坐標代入即可得出函數解析式;(3)聯立y甲與改進后y乙的函數解析式即可得出答案.【題目詳解】(1)由圖①得,總工作量為370件,由圖②可得出乙完成了220件,故甲5時完成的工作量是1.(2)設y甲的函數解析式為y=kt(k≠0),把點(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改進前,甲乙每小時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025深圳瑞豐餐飲管理公司食堂承包合同書
- 2025螺紋鋼租賃合同螺紋鋼租賃合同格式
- 2025商場店鋪裝修設計合同書
- 《特色商場B》課件
- 2025探討合同法中代位權的應用
- 2025年體驗式加盟合同范本
- 2025建筑工地砂漿供貨合同樣本
- 2025年華南科技C組團補充合同
- DB12-T1294-2023-口感型番茄早春季溫室栽培技術規程-天津市
- 高二英語學業水平測試復習計劃
- 漏電保護器日常檢查記錄表
- 華為WLAN培訓資料課件
- 干眼(癥)診治基礎知識考試試題及答案
- 2021-2022學年高二下學期英語讀后續寫公開課課件:continuation writing-receiving and giving課件
- 2023年初中數學競賽試題中國教育學會中學數學教學專業委員會數學周報杯
- 第七章流域水環境規劃課件
- 南美白對蝦養殖課件
- 房建工程樣板策劃及實施方案
- 二年級數學生活中的推理-完整版PPT
- 《環境生態學導論(第二版)》課件第二章 生物與環境
- 車床、鉆床安全風險辨識清單
評論
0/150
提交評論