安徽省阜陽地區2024屆中考聯考數學試題含解析_第1頁
安徽省阜陽地區2024屆中考聯考數學試題含解析_第2頁
安徽省阜陽地區2024屆中考聯考數學試題含解析_第3頁
安徽省阜陽地區2024屆中考聯考數學試題含解析_第4頁
安徽省阜陽地區2024屆中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省阜陽地區2024年中考聯考數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.2.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π3.若關于的一元二次方程x(x+1)+ax=0有兩個相等的實數根,則實數a的值為()A. B.1 C. D.4.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形5.在△ABC中,∠C=90°,,那么∠B的度數為()A.60° B.45° C.30° D.30°或60°6.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產生的能量.把130000000kg用科學記數法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg7.計算(﹣5)﹣(﹣3)的結果等于()A.﹣8B.8C.﹣2D.28.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣19.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.310.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體二、填空題(共7小題,每小題3分,滿分21分)11.若am=5,an=6,則am+n=________.12.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數y1和過P,A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數的最大值之和等于__.13.如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.14.因式分解:16a3﹣4a=_____.15.如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F是線段BC邊上的動點,將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是______.16.若a2+3=2b,則a3﹣2ab+3a=_____.17.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.三、解答題(共7小題,滿分69分)18.(10分)如圖①,一次函數y=x﹣2的圖象交x軸于點A,交y軸于點B,二次函數y=x2+bx+c的圖象經過A、B兩點,與x軸交于另一點C.(1)求二次函數的關系式及點C的坐標;(2)如圖②,若點P是直線AB上方的拋物線上一點,過點P作PD∥x軸交AB于點D,PE∥y軸交AB于點E,求PD+PE的最大值;(3)如圖③,若點M在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點M的坐標.19.(5分)八年級(1)班學生在完成課題學習“體質健康測試中的數據分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統計圖.請你根據上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.20.(8分)某初級中學對畢業班學生三年來參加市級以上各項活動獲獎情況進行統計,七年級時有48人次獲獎,之后逐年增加,到九年級畢業時累計共有183人次獲獎,求這兩年中獲獎人次的平均年增長率.21.(10分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統計圖.類別頻數(人數)頻率小說0.5戲劇4散文100.25其他6合計1根據圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數分布表,并求出扇形統計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.22.(10分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現:(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數量關系為;題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數量關系為;②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數量關系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.23.(12分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.24.(14分)解不等式組請結合題意填空,完成本題的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在數軸上表示出來:(IV)原不等式組的解集為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】

由旋轉的性質得到AB=BE,根據菱形的性質得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據三角函數的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結論.【題目詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【題目點撥】本題考查了旋轉的性質,菱形的性質,等邊三角形的判定與性質,解直角三角形的應用等,熟練掌握和靈活運用相關的知識是解題的關鍵.2、D【解題分析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【題目詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【題目點撥】本題考查了矩形的性質、特殊角的三角函數值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.3、A【解題分析】【分析】整理成一般式后,根據方程有兩個相等的實數根,可得△=0,得到關于a的方程,解方程即可得.【題目詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【題目點撥】本題考查一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.4、D【解題分析】【分析】根據正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【題目詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【題目點撥】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.5、C【解題分析】

根據特殊角的三角函數值可知∠A=60°,再根據直角三角形中兩銳角互余求出∠B的值即可.【題目詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數值和直角三角形中兩銳角互余的性質,熟記特殊角的三角函數值是解答本題的突破點.6、D【解題分析】試題分析:科學計數法是指:a×,且,n為原數的整數位數減一.7、C【解題分析】分析:減去一個數,等于加上這個數的相反數.依此計算即可求解.詳解:(-5)-(-3)=-1.故選:C.點睛:考查了有理數的減法,方法指引:①在進行減法運算時,首先弄清減數的符號;②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數的性質符號(減數變相反數).8、D【解題分析】分析:根據合并同類項法則,同底數冪相除,積的乘方的性質,同底數冪相乘的性質,逐一判斷即可.詳解:根據合并同類項法則,可知x3+x3=2x3,故不正確;根據同底數冪相除,底數不變指數相加,可知a6÷a2=a4,故不正確;根據積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據同底數冪相乘,底數不變指數相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關運算,是一道綜合性題目,熟練應用整式的相關性質和運算法則是解題關鍵.9、C【解題分析】

連接EG、FG,根據斜邊中線長為斜邊一半的性質即可求得EG=FG=BC,因為D是EF中點,根據等腰三角形三線合一的性質可得GD⊥EF,再根據勾股定理即可得出答案.【題目詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【題目點撥】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質、勾股定理以及等腰三角形三線合一的性質,本題中根據等腰三角形三線合一的性質求得GD⊥EF是解題的關鍵.10、A【解題分析】【分析】根據三視圖的知識使用排除法即可求得答案.【題目詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【題目點撥】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解題分析】

根據同底數冪乘法性質am·an=am+n,即可解題.【題目詳解】解:am+n=am·an=5×6=1.【題目點撥】本題考查了同底數冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.12、2【解題分析】

連接PB、PC,根據二次函數的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據等邊三角形的性質求解即可.【題目詳解】解:如圖,連接PB、PC,由二次函數的性質,OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數的最大值之和等于2.故答案為2.【題目點撥】本題考查了二次函數的最值問題,等邊三角形的判定與性質,解直角三角形,作輔助線構造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.13、同位角相等,兩直線平行.【解題分析】試題解析:利用三角板中兩個60°相等,可判定平行考點:平行線的判定14、4a(2a+1)(2a﹣1)【解題分析】

首先提取公因式,再利用平方差公式分解即可.【題目詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【題目點撥】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.15、1﹣1【解題分析】

如圖所示點B′在以E為圓心EA為半徑的圓上運動,當D、B′、E共線時時,此時B′D的值最小,根據勾股定理求出DE,根據折疊的性質可知B′E=BE=1,即可求出B′D.【題目詳解】如圖所示點B′在以E為圓心EA為半徑的圓上運動,當D、B′、E共線時時,此時B′D的值最小,根據折疊的性質,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB邊的中點,AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【題目點撥】本題考查了折疊的性質、全等三角形的判定與性質、兩點之間線段最短的綜合運用;確定點B′在何位置時,B′D的值最小是解題的關鍵.16、1【解題分析】

利用提公因式法將多項式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【題目詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【題目點撥】本題考查了因式分解的應用,利用提公因式法將多項式分解是本題的關鍵.17、(0,).【解題分析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯立兩函數解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數與一次函數的交點問題;軸對稱-最短路線問題.三、解答題(共7小題,滿分69分)18、(1)二次函數的關系式為y=;C(1,0);(2)當m=2時,PD+PE有最大值3;(3)點M的坐標為(,)或(,).【解題分析】

(1)先求出A、B的坐標,然后把A、B的坐標分別代入二次函數的解析式,解方程組即可得到結論;(2)先證明△PDE∽△OAB,得到PD=2PE.設P(m,),則E(m,),PD+PE=3PE,然后配方即可得到結論.(3)分兩種情況討論:①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.求出圓心O1的坐標和半徑,利用MO1=半徑即可得到結論.②當點M在在直線AB下方時,作O1關于AB的對稱點O2,如圖2.求出點O2的坐標,算出DM的長,即可得到結論.【題目詳解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函數y=的圖像經過A、B兩點,∴,解得:,∴二次函數的關系式為y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設P(m,),則E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴當m=2時,PD+PE有最大值3.(3)①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.∵△ABC的外接圓O1的圓心在對稱軸上,設圓心O1的坐標為(,-t).∴=,解得:t=2,∴圓心O1的坐標為(,-2),∴半徑為.設M(,y).∵MO1=,∴,解得:y=,∴點M的坐標為().②當點M在在直線AB下方時,作O1關于AB的對稱點O2,如圖2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點O2的坐標為(,0),∴O2D=1,∴DM==,∴點M的坐標為(,).綜上所述:點M的坐標為(,)或(,).點睛:本題是二次函數的綜合題.考查了求二次函數的解析式,求二次函數的最值,圓的有關性質.難度比較大,解答第(3)問的關鍵是求出△ABC外接圓的圓心坐標.19、(1)36,40,1;(2).【解題分析】

(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數除以所占比例即可;根據加權平均數的概念計算訓練后籃球定時定點投籃人均進球數.(2)畫出樹狀圖,根據概率公式求解即可.【題目詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;

該班共有學生(2+1+7+4+1+1)÷10%=40人;

訓練后籃球定時定點投籃平均每個人的進球數是=1,

故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結果,選中兩名學生恰好是兩名男生(記為事件M)的結果有6種,∴P(M)==.20、25%【解題分析】

首先設這兩年中獲獎人次的平均年增長率為x,則可得八年級的獲獎人數為48(1+x),九年級的獲獎人數為48(1+x)2;故根據題意可得48(1+x)2=183,即可求得x的值,即可求解本題.【題目詳解】設這兩年中獲獎人次的平均年增長率為x,根據題意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合題意,舍去).答:這兩年中獲獎人次的年平均年增長率為25%21、(1)41(2)15%(3)【解題分析】

(1)用散文的頻數除以其頻率即可求得樣本總數;(2)根據其他類的頻數和總人數求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數,找出恰好是丙與乙的情況,即可確定出所求概率.【題目詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.22、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解題分析】

(1)根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(2)①根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;②根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(3)分兩種情況利用勾股定理和三角函數解答即可.【題目詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論