宣威市來賓一中學2024屆中考數學押題卷含解析_第1頁
宣威市來賓一中學2024屆中考數學押題卷含解析_第2頁
宣威市來賓一中學2024屆中考數學押題卷含解析_第3頁
宣威市來賓一中學2024屆中考數學押題卷含解析_第4頁
宣威市來賓一中學2024屆中考數學押題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

宣威市來賓一中學2024屆中考數學押題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°2.在中,,,,則的值是()A. B. C. D.3.的值等于()A. B. C. D.4.許昌市2017年國內生產總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學記數法表示1915.5億應為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×10125.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm6.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有()A.2個 B.3個 C.4個 D.5個7.下列運算結果正確的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a8.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定9.一次數學測試后,隨機抽取九年級某班5名學生的成績如下:91,78,1,85,1.關于這組數據說法錯誤的是()A.極差是20 B.中位數是91 C.眾數是1 D.平均數是9110.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤12.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數經過正方形AOBC對角線的交點,半徑為()的圓內切于△ABC,則k的值為________.13.因式分解a3-6a2+9a=_____.14.完全相同的3個小球上面分別標有數-2、-1、1,將其放入一個不透明的盒子中后搖勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),兩次摸到的球上數之和是負數的概率是________.15.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.16.若x=-1,則x2+2x+1=__________.三、解答題(共8題,共72分)17.(8分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設=,=,求向量關于、的分解式.18.(8分)2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景線.大橋主體工程隧道的東、西兩端各設置了一個海中人工島,來銜接橋梁和海地隧道,西人工島上的點和東人工島上的點間的距離約為5.6千米,點是與西人工島相連的大橋上的一點,,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達點時觀測兩個人工島,分別測得,與觀光船航向的夾角,,求此時觀光船到大橋段的距離的長(參考數據:,,,,,).19.(8分)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如圖統計圖:根據統計圖所提供的倍息,解答下列問題:(1)本次抽樣調查中的學生人數是多少人;(2)補全條形統計圖;(3)若該校共有2000名學生,請根據統計結果估計該校課余興趣愛好為“打球”的學生人數;(4)現有愛好舞蹈的兩名男生兩名女生想參加舞蹈社,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.20.(8分)某初中學校組織400位同學參加義務植樹活動,每人植樹的棵數在5至10之間,甲、乙兩位同學分別調查了30位同學的植樹情況,并將收集的數據進行了整理,繪制成統計表分別為表1和表2:表1:甲調查九年級30位同學植樹情況統計表(單位:棵)每人植樹情況78910人數36156頻率0.10.20.50.2表2:乙調查三個年級各10位同學植樹情況統計表(單位:棵)每人植樹情況678910人數363116頻率0.10.20.10.40.2根據以上材料回答下列問題:(1)表1中30位同學植樹情況的中位數是棵;(2)已知表2的最后兩列中有一個錯誤的數據,這個錯誤的數據是,正確的數據應該是;(3)指出哪位同學所抽取的樣本能更好反映此次植樹活動情況,并用該樣本估計本次活動400位同學一共植樹多少棵?21.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.22.(10分)如圖,熱氣球探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角為30°,看這棟樓底部C處的俯角為60°,熱氣球與樓的水平距離AD為100米,試求這棟樓的高度BC.23.(12分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.24.珠海某企業接到加工“無人船”某零件5000個的任務.在加工完500個后,改進了技術,每天加工的零件數量是原來的1.5倍,整個加工過程共用了35天完成.求技術改進后每天加工零件的數量.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

根據∠ABD=35°就可以求出的度數,再根據,可以求出,因此就可以求得的度數,從而求得∠DBC【題目詳解】解:∵∠ABD=35°,∴的度數都是70°,∵BD為直徑,∴的度數是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數也是110°,∴的度數是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【題目點撥】本題考查了等腰三角形性質、圓周角定理,主要考查學生的推理能力.2、D【解題分析】

首先根據勾股定理求得AC的長,然后利用正弦函數的定義即可求解.【題目詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【題目點撥】本題考查了三角函數的定義,求銳角的三角函數值的方法:利用銳角三角函數的定義,轉化成直角三角形的邊長的比.3、C【解題分析】試題解析:根據特殊角的三角函數值,可知:故選C.4、C【解題分析】

科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.【題目詳解】用科學記數法表示1915.5億應為1.9155×1011,故選C.【題目點撥】考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.5、A【解題分析】

根據已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據扇形弧長等于圓錐底面圓的周長即可得出答案。【題目詳解】直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【題目點撥】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。6、B【解題分析】

①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當x=﹣1時,y=a﹣b+c由此可判定②;③由對稱知,當x=2時,函數值大于0,即y=4a+2b+c>0,由此可判定③;④當x=3時函數值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當x=1時,y的值最大.此時,y=a+b+c,當x=n時,y=an2+bn+c,由此即可判定⑤.【題目詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項錯誤;②當x=﹣1時,y=a﹣b+c<0,即b>a+c,故此選項錯誤;③由對稱知,當x=2時,函數值大于0,即y=4a+2b+c>0,故此選項正確;④當x=3時函數值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項正確;⑤當x=1時,y的值最大.此時,y=a+b+c,而當x=n時,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項正確.∴③④⑤正確.故選B.【題目點撥】本題主要考查了拋物線的圖象與二次函數系數之間的關系,熟知拋物線的圖象與二次函數系數之間的關系是解決本題的關鍵.7、C【解題分析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.8、C【解題分析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.9、D【解題分析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數為91,所以B選項正確;因為1出現了兩次,最多,所以眾數是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數②中位數③平均數④極差.10、D【解題分析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【題目詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【題目點撥】本題考查了矩形的性質、特殊角的三角函數值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③.【解題分析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結論為:②③.考點:1.相似三角形的判定與性質;2.全等三角形的判定與性質.12、1【解題分析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數y=經過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【題目點撥】此題主要考查了正方形的性質以及三角形內切圓的性質以及待定系數法求反比例函數解析式,根據已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.13、a(a-3)2【解題分析】

根據因式分解的方法與步驟,先提取公因式,再根據完全平方公式分解即可.【題目詳解】解:故答案為:.【題目點撥】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關鍵.14、【解題分析】

畫樹狀圖列出所有等可能結果,從中找到能兩次摸到的球上數之和是負數的結果,根據概率公式計算可得.【題目詳解】解:畫樹狀圖如下:由樹狀圖可知共有9種等可能結果,其中兩次摸到的球上數之和是負數的有6種結果,所以兩次摸到的球上數之和是負數的概率為,故答案為:.【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.15、1【解題分析】

如圖作點D關于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【題目詳解】如圖作點D關于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【題目點撥】本題考查翻折變換、矩形的性質、勾股定理等知識,解題的關鍵是學會利用軸對稱,根據兩點之間線段最短解決最短問題.16、2【解題分析】

先利用完全平方公式對所求式子進行變形,然后代入x的值進行計算即可.【題目詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【題目點撥】本題考查了代數式求值,涉及了因式分解,二次根式的性質等,熟練掌握相關知識是解題的關鍵.三、解答題(共8題,共72分)17、答案見解析【解題分析】試題分析:連接BD,由已知可得MN是△BCD的中位線,則MN=BD,根據向量減法表示出BD即可得.試題解析:連接BD,∵點M、N分別是邊DC、BC的中點,∴MN是△BCD的中位線,∴MN∥BD,MN=BD,∵,∴.18、5.6千米【解題分析】

設PD的長為x千米,DA的長為y千米,在Rt△PAD中利用正切的定義得到tan18°=,即y=0.33x,同樣在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【題目詳解】設PD的長為x千米,DA的長為y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此時觀光船到大橋AC段的距離PD的長為5.6千米.【題目點撥】本題考查了解直角三角形的應用:根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.19、(1)本次抽樣調查中的學生人數為100人;(2)補全條形統計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數為800人;(4).【解題分析】

(1)用選“閱讀”的人數除以它所占的百分比即可得到調查的總人數;(2)先計算出選“舞蹈”的人數,再計算出選“打球”的人數,然后補全條形統計圖;(3)用2000乘以樣本中選“打球”的人數所占的百分比可估計該校課余興趣愛好為“打球”的學生人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出選到一男一女的結果數,然后根據概率公式求解.【題目詳解】(1)30÷30%=100,所以本次抽樣調查中的學生人數為100人;(2)選”舞蹈”的人數為100×10%=10(人),選“打球”的人數為100﹣30﹣10﹣20=40(人),補全條形統計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數為800人;(4)畫樹狀圖為:共有12種等可能的結果數,其中選到一男一女的結果數為8,所以選到一男一女的概率=.【題目點撥】本題考查了條形統計圖與扇形統計圖,列表法與樹狀圖法求概率,讀懂統計圖,從中找到有用的信息是解題的關鍵.本題中還用到了知識點為:概率=所求情況數與總情況數之比.20、(1)9;(2)11,12;(3)3360棵【解題分析】

(1)30位同學的植樹量中第15個、16個數都是9,即可得到植樹的中位數;(2)根據頻率相加得1確定頻率正確,計算頻數即可確定錯誤的數據是11,正確的硬是12;(3)樣本數據應體現機會均等由此得到乙同學所抽取的樣本更好,再根據部分計算總體的公式即可得到答案.【題目詳解】(1)表1中30位同學植樹情況的中位數是9棵,故答案為:9;(2)表2的最后兩列中,錯誤的數據是11,正確的數據應該是30×0.4=12;故答案為:11,12;(3)乙同學所抽取的樣本能更好反映此次植樹活動情況,(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),答:本次活動400位同學一共植樹3360棵.【題目點撥】此題考查統計的計算,掌握中位數的計算方法,部分的頻數的計算方法,依據樣本計算總體的方法是解題的關鍵.21、詳見解析.【解題分析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質和等腰三角形性質,找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切線.點睛:此題考查切線的判定.證明的關鍵是得到△OCE≌△ODE.22、這棟樓的高度BC是米.【解題分析】試題分析:在直角三角形ADB中和直角三角形ACD中,根據銳角三角函數中的正切可以分別求得BD和CD的長,從而可以求得BC的長.試題解析:解:∵°,°,°,AD=100,∴在Rt中,,在Rt中,.∴.點睛:本題考查解直角三角形的應用-仰角俯角問題,解答此類問題的關鍵是明確已知邊、已知角和未知邊之間的三角函數關系.23、(1)相等,理由見解析;(2)2;(3).【解題分析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結論;

(2)構造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結論;

(3)先構造出矩形,同(1)的方法得,∠BAD=∠CB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論