2024屆黑龍江省哈爾濱市平房區重點達標名校中考數學全真模擬試卷含解析_第1頁
2024屆黑龍江省哈爾濱市平房區重點達標名校中考數學全真模擬試卷含解析_第2頁
2024屆黑龍江省哈爾濱市平房區重點達標名校中考數學全真模擬試卷含解析_第3頁
2024屆黑龍江省哈爾濱市平房區重點達標名校中考數學全真模擬試卷含解析_第4頁
2024屆黑龍江省哈爾濱市平房區重點達標名校中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省哈爾濱市平房區重點達標名校中考數學全真模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知△ABC中,∠ABC=45°,F是高AD和BE的交點,CD=4,則線段DF的長度為()A. B.4 C. D.2.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.3.二次函數(a、b、c是常數,且a≠0)的圖象如圖所示,下列結論錯誤的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b4.如圖,已知,,則的度數為()A. B. C. D.5.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=26.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數是A. B. C. D.7.長春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個數用科學記數法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1088.如圖,下列圖形都是由面積為1的正方形按一定的規律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規律.則第(6)個圖形中面積為1的正方形的個數為()A.20 B.27 C.35 D.409.設x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.1610.下列運算結果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+bD.6ab2÷2ab=3b11.已知反比例函數下列結論正確的是()A.圖像經過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<112.如圖分別是某班全體學生上學時乘車、步行、騎車人數的分布直方圖和扇形統計圖(兩圖都不完整),下列結論錯誤的是()A.該班總人數為50 B.步行人數為30C.乘車人數是騎車人數的2.5倍 D.騎車人數占20%二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.14.分式方程-1=的解是x=________.15.分解因式:3x2-6x+3=__.16.不等式1﹣2x<6的負整數解是___________.17.《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設有x匹大馬,y匹小馬,根據題意可列方程組為______.18.方程=的解是____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?20.(6分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現將這些蔬菜全部調運C,D兩個災區安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請填寫下表,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數關系式,并求總運費最小的調運方案;經過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.21.(6分)為實施“農村留守兒童關愛計劃”,某校結全校各班留守兒童的人數情況進行了統計,發現各班留守兒童人數只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統計圖:求該校平均每班有多少名留守兒童?并將該條形統計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.22.(8分)霧霾天氣嚴重影響市民的生活質量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調查了所在城市部分市民,并對調查結果進行了整理,繪制了下圖所示的不完整的統計圖表:組別霧霾天氣的主要成因百分比A工業污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據統計圖表回答下列問題:本次被調查的市民共有多少人?并求和的值;請補全條形統計圖,并計算扇形統計圖中扇形區域所對應的圓心角的度數;若該市有100萬人口,請估計市民認為“工業污染和汽車尾氣排放是霧霾天氣主要成因”的人數.23.(8分)如圖,一個長方形運動場被分隔成A、B、A、B、C共5個區,A區是邊長為am的正方形,C區是邊長為bm的正方形.列式表示每個B區長方形場地的周長,并將式子化簡;列式表示整個長方形運動場的周長,并將式子化簡;如果a=20,b=10,求整個長方形運動場的面積.24.(10分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優惠.甲商場的優惠條件是:第一件按原售價收費,其余每件優惠30%;乙商場的優惠條件是:每件優惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關系式;當甲、乙兩個商場的收費相同時,所買商品為多少件?當所買商品為5件時,應選擇哪個商場更優惠?請說明理由.25.(10分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。26.(12分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.27.(12分)先化簡,再計算:其中.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

求出AD=BD,根據∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據ASA證△FBD≌△CAD,推出CD=DF即可.【題目詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【題目點撥】此題主要考查了全等三角形的判定,關鍵是找出能使三角形全等的條件.2、B【解題分析】

根據常見幾何體的展開圖即可得.【題目詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【題目點撥】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.3、D【解題分析】

根據二次函數的圖象與性質逐一判斷即可求出答案.【題目詳解】由圖象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正確;∵拋物線開口向上,∴a<0,∵拋物線與y軸的負半軸,∴c<0,∵拋物線對稱軸為x=<0,∴b<0,∴abc<0,故B正確;∵當x=1時,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正確;∵當x=﹣1時,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D錯誤;故選D.考點:本題主要考查圖象與二次函數系數之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程、不等式之間的轉換,根的判別式的熟練運用.4、B【解題分析】分析:根據∠AOC和∠BOC的度數得出∠AOB的度數,從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關系是解題的關鍵.5、C【解題分析】試題解析:x(x+1)=0,

?x=0或x+1=0,

解得x1=0,x1=-1.

故選C.6、A【解題分析】分析:首先求出∠AEB,再利用三角形內角和定理求出∠B,最后利用平行四邊形的性質得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質、平行四邊形的性質、三角形內角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考常考題型.7、C【解題分析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于10時,n是正數;當原數的絕對值小于1時,n是負數.【題目詳解】2500000000的小數點向左移動9位得到2.5,所以2500000000用科學記數表示為:2.5×1.故選C.【題目點撥】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、B【解題分析】試題解析:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數為2+3+4+5+6+7=27個.故選B.考點:規律型:圖形變化類.9、C【解題分析】

根據根與系數的關系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計算即可.【題目詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,

∴x1+x2=2,x1?x2=-5,

∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.

故選C.【題目點撥】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.10、D【解題分析】

各項計算得到結果,即可作出判斷.【題目詳解】解:A、原式=2a,不符合題意;

B、原式=a2-2ab+b2,不符合題意;

C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;

故選D【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.11、B【解題分析】分析:直接利用反比例函數的性質進而分析得出答案.詳解:A.反比例函數y=,圖象經過點(﹣1,﹣1),故此選項錯誤;B.反比例函數y=,圖象在第一、三象限,故此選項正確;C.反比例函數y=,每個象限內,y隨著x的增大而減小,故此選項錯誤;D.反比例函數y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數的性質,正確掌握反比例函數的性質是解題的關鍵.12、B【解題分析】

根據乘車人數是25人,而乘車人數所占的比例是50%,即可求得總人數,然后根據百分比的含義即可求得步行的人數,以及騎車人數所占的比例.【題目詳解】A、總人數是:25÷50%=50(人),故A正確;B、步行的人數是:50×30%=15(人),故B錯誤;C、乘車人數是騎車人數倍數是:50%÷20%=2.5,故C正確;D、騎車人數所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【題目點撥】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、30【解題分析】試題分析:根據直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質14、-5【解題分析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【題目點撥】本題考查了解分式方程,解題的關鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.15、3(x-1)2【解題分析】

先提取公因式3,再對余下的多項式利用完全平方公式繼續分解.【題目詳解】.故答案是:3(x-1)2.【題目點撥】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.16、﹣2,﹣1【解題分析】試題分析:根據不等式的性質求出不等式的解集,找出不等式的整數解即可.解:1﹣2x<6,移項得:﹣2x<6﹣1,合并同類項得:﹣2x<5,不等式的兩邊都除以﹣2得:x>﹣,∴不等式的負整數解是﹣2,﹣1,故答案為:﹣2,﹣1.點評:本題主要考查對解一元一次不等式,一元一次不等式的整數解,不等式的性質等知識點的理解和掌握,能根據不等式的性質求出不等式的解集是解此題的關鍵.17、【解題分析】分析:根據題意可以列出相應的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.18、x=1【解題分析】

觀察可得方程最簡公分母為x(x?1),去分母,轉化為整式方程求解,結果要檢驗.【題目詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗:把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【題目點撥】解分式方程的基本思想是把分式方程轉化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能會產生增根,增根是轉化后整式的根,不是原方程的根,因此要注意檢驗.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)進價為1000元,標價為1500元;(2)該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.【解題分析】分析:(1)設進價為x元,則標價是1.5x元,根據關鍵語句:按標價九折銷售該型號自行車8輛的利潤是1.5x×0.9×8-8x,將標價直降100元銷售7輛獲利是(1.5x-100)×7-7x,根據利潤相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到進價,進而得到標價;(2)設該型號自行車降價a元,利潤為w元,利用銷售量×每輛自行車的利潤=總利潤列出函數關系式,再利用配方法求最值即可.詳解:(1)設進價為x元,則標價是1.5x元,由題意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:進價為1000元,標價為1500元;(2)設該型號自行車降價a元,利潤為w元,由題意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴當a=80時,w最大=26460,答:該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.點睛:此題主要考查了二次函數的應用,以及元一次方程的應用,關鍵是正確理解題意,根據已知得出w與a的關系式,進而求出最值.20、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小.【解題分析】

(1)根據題意可得解.(2)w與x之間的函數關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調運方案.(3)根據題意得出w與x之間的函數關系式,然后根據m的取值范圍不同分別分析得出總運費最小的調運方案.【題目詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小,其調運方案如表二.【題目點撥】此題考查一次函數的應用,解題關鍵在于根據題意列出w與x之間的函數關系式,并注意分類討論思想的應用.21、解:(1)該校班級個數為4÷20%=20(個),只有2名留守兒童的班級個數為:20﹣(2+3+4+5+4)=2(個),該校平均每班留守兒童的人數為:=4(名),補圖如下:(2)由(1)得只有2名留守兒童的班級有2個,共4名學生.設A1,A2來自一個班,B1,B2來自一個班,有樹狀圖可知,共有12中等可能的情況,其中來自一個班的共有4種情況,則所選兩名留守兒童來自同一個班級的概率為:=.【解題分析】(1)首先求出班級數,然后根據條形統計圖求出只有2名留守兒童的班級數,再求出總的留守兒童數,最后求出每班平均留守兒童數;(2)利用樹狀圖確定可能種數和來自同一班的種數,然后就能算出來自同一個班級的概率.22、(1)200人,;(2)見解析,;(3)75萬人.【解題分析】

(1)用A類的人數除以所占的百分比求出被調查的市民數,再用B類的人數除以總人數得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數,從而可補全條形統計圖,用360度乘以n即可得扇形區域所對應的圓心角的度數;(3)用該市的總人數乘以持有A、B兩類所占的百分比的和即可.【題目詳解】(1)本次被調查的市民共有:(人),∴,;(2)組的人數是(人)、組的人數是(人),∴;補全的條形統計圖如下圖所示:扇形區域所對應的圓心角的度數為:;(3)(萬),∴若該市有100萬人口,市民認為“工業污染和汽車尾氣排放是霧霾天氣主要成因”的人數約為75萬人.【題目點撥】本題考查了條形統計圖、扇形統計圖、統計表,讀懂圖形,找出必要的信息是解題的關鍵.23、(1)(2)(3)【解題分析】試題分析:(1)結合圖形可得矩形B的長可表示為:a+b,寬可表示為:a-b,繼而可表示出周長;(2)根據題意表示出整個矩形的長和寬,再求周長即可;(3)先表示出整個矩形的面積,然后代入計算即可.試題解析:(1)矩形B的長可表示為:a+b,寬可表示為:a-b,∴每個B區矩形場地的周長為:2(a+b+a-b)=4a;(2)整個矩形的長為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個矩形的周長為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點睛:本題考查了列代數式的知識,屬于基礎題,解答本題的關鍵是結合圖形表示出各矩形的長和寬.24、(1);y2=2250x;(2)甲、乙兩個商場的收費相同時,所買商品為6件;(3)所買商品為5件時,應選擇乙商場更優惠.【解題分析】試題分析:(1)由兩家商場的優惠方案分別列式整理即可;(2)由收費相同,列出方程求解即可;(3)由函數解析式分別求出x=5時的函數值,即可得解試題解析:(1)當x=1時,y1=3000;當x>1時,y1=3000+3000(x﹣1)×(1﹣30%)=2100

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論