




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省劍河縣達標名校2024屆中考聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E給好落在AB的延長線上,連接AD,下列結論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE2.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8333.下列運算結果正確的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2?(﹣x3)=﹣x5 D.2x2÷x2=x4.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(5.反比例函數y=(a>0,a為常數)和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數是()A.0 B.1 C.2 D.36.若函數的圖象在其象限內y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<27.在學校演講比賽中,10名選手的成績折線統計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.58.若正比例函數y=3x的圖象經過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y29.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm10.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數、中位數分別是()年齡(歲)1213141516人數12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲二、填空題(本大題共6個小題,每小題3分,共18分)11.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.12.已知(x、y、z≠0),那么的值為_____.13.因式分解:2m2﹣8n2=.14.若關于x的二次函數y=ax2+a2的最小值為4,則a的值為______.15.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.16.若x2+kx+81是完全平方式,則k的值應是________.三、解答題(共8題,共72分)17.(8分)隨著中國傳統節日“端午節”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙兩種品牌粽子每盒分別為多少元?陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節省了多少錢?18.(8分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數是乙種電冰箱臺數的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經預算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數不超過丙種電冰箱的臺數.為獲得最大利潤,應分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?19.(8分)如圖,已知AB是⊙O的直徑,BC⊥AB,連結OC,弦AD∥OC,直線CD交BA的延長線于點E.(1)求證:直線CD是⊙O的切線;(2)若DE=2BC,AD=5,求OC的值.20.(8分)某單位為了擴大經營,分四次向社會進行招工測試,測試后對成績合格人數與不合格人數進行統計,并繪制成如圖所示的不完整的統計圖.(1)測試不合格人數的中位數是.(2)第二次測試合格人數為50人,到第四次測試合格人數為每次測試不合格人數平均數的2倍少18人,若這兩次測試的平均增長率相同,求平均增長率;(3)在(2)的條件下補全條形統計圖和扇形統計圖.21.(8分)小方與同學一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進10米到達點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.(1)求AD的長.(2)求樹長AB.22.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.23.(12分)如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高(1)△ACD與△ABC相似嗎?為什么?(2)AC2=AB?AD成立嗎?為什么?24.如圖,△ABC內接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當AB=8,CE=2時,求⊙O直徑的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
利用旋轉的性質得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據平行線的性質可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數不確定,所以不能判定BC⊥DE.【題目詳解】∵△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當∠E=30°時,BC⊥DE.故選C.【題目點撥】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的性質.2、C【解題分析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.3、C【解題分析】
直接利用整式的除法運算以及積的乘方運算法則、合并同類項法則分別化簡得出答案.【題目詳解】A選項:x2+2x2=3x2,故此選項錯誤;B選項:(﹣2x2)3=﹣8x6,故此選項錯誤;C選項:x2?(﹣x3)=﹣x5,故此選項正確;D選項:2x2÷x2=2,故此選項錯誤.故選C.【題目點撥】考查了整式的除法運算以及積的乘方運算、合并同類項,正確掌握運算法則是解題關鍵.4、C【解題分析】利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規律是解題關鍵.5、D【解題分析】
根據反比例函數的性質和比例系數的幾何意義逐項分析可得出解.【題目詳解】①由于A、B在同一反比例函數y=圖象上,由反比例系數的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數的幾何意義.6、B【解題分析】
根據反比例函數的性質,可得m+1<0,從而得出m的取值范圍.【題目詳解】∵函數的圖象在其象限內y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.7、C【解題分析】試題分析:根據折線統計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.8、A【解題分析】
分別把點A(?1,y1),點B(?1,y1)代入函數y=3x,求出點y1,y1的值,并比較出其大小即可.【題目詳解】解:∵點A(?1,y1),點B(?1,y1)是函數y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【題目點撥】本題考查的是一次函數圖象上點的坐標特點,即一次函數圖象上各點的坐標一定適合此函數的解析式.9、A【解題分析】試題分析:由折疊的性質知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.10、D【解題分析】
眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【題目詳解】解:數據1出現了5次,最多,故為眾數為1;按大小排列第6和第7個數均是1,所以中位數是1.故選D.【題目點撥】本題主要考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求.如果是偶數個則找中間兩位數的平均數.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】分析:首先根據正比例函數得出a的值,然后將交點坐標代入反比例函數解析式得出k的值.詳解:將(a,1)代入正比例函數可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數法求函數解析式,屬于基礎題型.根據正比例函數得出交點坐標是解題的關鍵.12、1【解題分析】解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案為1.點睛:本題考查了分式的化簡求值和解二元一次方程組,難度適中,關鍵是先用z把x與y表示出來再進行代入求解.13、2(m+2n)(m﹣2n).【解題分析】試題分析:根據因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數的最大公約數2,進一步發現提公因式后,可以用平方差公式繼續分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.14、1.【解題分析】
根據二次函數的性質列出不等式和等式,計算即可.【題目詳解】解:∵關于x的二次函數y=ax1+a1的最小值為4,
∴a1=4,a>0,
解得,a=1,
故答案為1.【題目點撥】本題考查的是二次函數的最值問題,掌握二次函數的性質是解題的關鍵.15、2【解題分析】
由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【題目詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【題目點撥】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.16、±1【解題分析】試題分析:利用完全平方公式的結構特征判斷即可確定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案為±1.考點:完全平方式.三、解答題(共8題,共72分)17、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后購買這批粽子比不打折節省了3120元.【解題分析】分析:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)根據節省錢數=原價購買所需錢數-打折后購買所需錢數,即可求出節省的錢數.詳解:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根據題意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后購買這批粽子比不打折節省了3640元.點睛:本題考查了二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據數量關系,列式計算.18、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解題分析】
(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關于x的函數解析式,結合x的取值范圍,利用一次函數的性質求解可得.【題目詳解】(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【題目點撥】本題主要考查一次函數的應用與一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的不等關系和相等關系,并據此列出不等式與函數解析式.19、(1)證明見解析;(2)OC=15【解題分析】試題分析:(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對應邊成比例,求得AD:OC的值.試題解析:(1)連結DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO,OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考點:1.切線的判定2.全等三角形的判定與性質3.相似三角形的判定與性質.20、(1)1;(2)這兩次測試的平均增長率為20%;(3)55%.【解題分析】
(1)將四次測試結果排序,結合中位數的定義即可求出結論;(2)由第四次測試合格人數為每次測試不合格人數平均數的2倍少18人,可求出第四次測試合格人數,設這兩次測試的平均增長率為x,由第二次、第四次測試合格人數,即可得出關于x的一元二次方程,解之取其中的正值即可得出結論;(3)由第二次測試合格人數結合平均增長率,可求出第三次測試合格人數,根據不合格總人數÷參加測試的總人數×100%即可求出不合格率,進而可求出合格率,再將條形統計圖和扇形統計圖補充完整,此題得解.【題目詳解】解:(1)將四次測試結果排序,得:30,40,50,60,∴測試不合格人數的中位數是(40+50)÷2=1.故答案為1;(2)∵每次測試不合格人數的平均數為(60+40+30+50)÷4=1(人),∴第四次測試合格人數為1×2﹣18=72(人).設這兩次測試的平均增長率為x,根據題意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去),∴這兩次測試的平均增長率為20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.補全條形統計圖與扇形統計圖如解圖所示.【題目點撥】本題考查了一元二次方程的應用、扇形統計圖、條形統計圖、中位數以及算術平均數,解題的關鍵是:(1)牢記中位數的定義;(2)找準等量關系,正確列出一元二次方程;(3)根據數量關系,列式計算求出統計圖中缺失數據.21、(1);(2).【解題分析】試題分析:(1)過點A作AE⊥CB于點E,設AE=x,分別表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)過點B作BF⊥AC于點F,設BF=y,分別表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的長度.試題解析:(1)如圖,過A作AH⊥CB于H,設AH=x,CH=x,DH=x.∵CH―DH=CD,∴x―x=10,∴x=.∵∠ADH=45°,∴AD=x=.(2)如圖,過B作BM⊥AD于M.∵∠1=75°,∠ADB=45°,∴∠DAB=30°.設MB=m,∴AB=2m,AM=m,DM=m.∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.22、(1)見解析;(2)【解題分析】
(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【題目詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作開發房地產協議
- 汽車租賃行業車輛保險免責協議書
- 應急貸款服務合同范文
- 商業貿易貨物進出口協議
- 短期租場地合同協議書
- 汽車租賃行業車輛保險協議
- 城市污水處理廠委托運營合同
- 自愿離婚協議書有子女
- 電子產品行業產品質量保證免責協議
- 2024年度寧夏回族自治區二級造價工程師之安裝工程建設工程計量與計價實務題庫檢測試卷B卷附答案
- 2025河南中煙許昌卷煙廠招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年河南輕工職業學院高職單招語文歷年參考題庫含答案解析
- 即時通訊系統建設方案
- 動車乘務實務知到智慧樹章節測試課后答案2024年秋陜西交通職業技術學院
- 胎盤植入課件講義版
- 山東鐵投集團招聘筆試沖刺題2025
- 2025年江蘇鹽城東方集團招聘筆試參考題庫含答案解析
- 2021版中醫疾病醫保對應中醫疾病醫保2
- 政府績效評估 課件 蔡立輝 第1-5章 導論 -政府績效評估程序
- 食堂負責人崗位職責
- 車間排產計劃培訓
評論
0/150
提交評論