2024屆湖北省武漢市重點中學中考數學模擬精編試卷含解析_第1頁
2024屆湖北省武漢市重點中學中考數學模擬精編試卷含解析_第2頁
2024屆湖北省武漢市重點中學中考數學模擬精編試卷含解析_第3頁
2024屆湖北省武漢市重點中學中考數學模擬精編試卷含解析_第4頁
2024屆湖北省武漢市重點中學中考數學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省武漢市重點中學中考數學模擬精編試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.2.不等式組的解集在數軸上表示正確的是()A. B.C. D.3.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數字表示在該位置的小正方體塊的個數,那么這個幾何體的主視圖是()A. B. C. D.4.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個5.下列實數中,有理數是()A. B. C.π D.6.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19987.設x1,x2是方程x2-2x-1=0的兩個實數根,則的值是()A.-6 B.-5 C.-6或-5 D.6或58.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現將這5張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.9.估計﹣÷2的運算結果在哪兩個整數之間()A.0和1 B.1和2 C.2和3 D.3和410.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x211.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°12.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:x3﹣4x=_____.14.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.15.定義:直線l1與l2相交于點O,對于平面內任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序實數對(p,q)是點M的“距離坐標”.根據上述定義,“距離坐標”是(1,2)的點的個數共有______個.16.圖,A,B是反比例函數y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.17.將拋物線y=(x+m)2向右平移2個單位后,對稱軸是y軸,那么m的值是_____.18.如圖,把△ABC繞點C順時針旋轉得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數是_____°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路路面的中心線時照明效果最好.此時,路燈的燈柱AB的高應該設計為多少米.(結果保留根號)20.(6分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.21.(6分)每年4月23日是世界讀書日,某校為了解學生課外閱讀情況,隨機抽取20名學生,對每人每周用于課外閱讀的平均時間(單位:min)進行調查,過程如下:收集數據:30608150401101301469010060811201407081102010081整理數據:課外閱讀平均時間x(min)0≤x<4040≤x<8080≤x<120120≤x<160等級DCBA人數3a8b分析數據:平均數中位數眾數80mn請根據以上提供的信息,解答下列問題:(1)填空:a=,b=;m=,n=;(2)已知該校學生500人,若每人每周用于課外閱讀的平均時間不少于80min為達標,請估計達標的學生數;(3)設閱讀一本課外書的平均時間為260min,請選擇適當的統計量,估計該校學生每人一年(按52周計)平均閱讀多少本課外書?22.(8分)綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(點A在點B的左側),與y軸交于C點.經過點A的直線l與y軸交于點D(0,﹣).(1)求A、B兩點的坐標及直線l的表達式;(2)如圖2,直線l從圖中的位置出發,以每秒1個單位的速度沿x軸的正方向運動,運動中直線l與x軸交于點E,與y軸交于點F,點A關于直線l的對稱點為A′,連接FA′、BA′,設直線l的運動時間為t(t>0)秒.探究下列問題:①請直接寫出A′的坐標(用含字母t的式子表示);②當點A′落在拋物線上時,求直線l的運動時間t的值,判斷此時四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運動過程中,坐標平面內是否存在點P,使得以P,A′,B,E為頂點的四邊形為矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.23.(8分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.24.(10分)已知,數軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數為,點B表示的數為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數,并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.25.(10分)如圖,一次函數y=kx+b的圖象分別與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求函數y=kx+b和y=的表達式;(2)已知點C(0,8),試在該一次函數圖象上確定一點M,使得MB=MC,求此時點M的坐標.26.(12分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積27.(12分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數量關系.②猜測線段AF,BF與CE的數量關系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉至圖2位置時,線段AF,BF與CE又有怎樣的數量關系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續旋轉至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

列表得,

1

2

0

-1

1

(1,1)

(1,2)

(1,0)

(1,-1)

2

(2,1)

(2,2)

(2,0)

(2,-1)

0

(0,1)

(0,2)

(0,0)

(0,-1)

-1

(-1,1)

(-1,2)

(-1,0)

(-1,-1)

由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.2、C【解題分析】

分別求出每一個不等式的解集,根據口訣:大小小大中間找確定不等式組的解集,在數軸上表示時由包括該數用實心點、不包括該數用空心點判斷即可.【題目詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【題目點撥】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.3、B【解題分析】

根據俯視圖可確定主視圖的列數和每列小正方體的個數.【題目詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【題目點撥】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.4、C【解題分析】

利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【題目詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【題目點撥】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.5、B【解題分析】

實數分為有理數,無理數,有理數有分數、整數,無理數有根式下不能開方的,等,很容易選擇.【題目詳解】A、二次根2不能正好開方,即為無理數,故本選項錯誤,

B、無限循環小數為有理數,符合;

C、為無理數,故本選項錯誤;

D、不能正好開方,即為無理數,故本選項錯誤;故選B.【題目點撥】本題考查的知識點是實數范圍內的有理數的判斷,解題關鍵是從實際出發有理數有分數,自然數等,無理數有、根式下開不盡的從而得到了答案.6、B【解題分析】

根據乘法分配律和有理數的混合運算法則可以解答本題.【題目詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【題目點撥】本題考查了有理數的混合運算,解答本題的關鍵是明確有理數混合運算的計算方法.7、A【解題分析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數根,∴x1+x2=2,x1?x2=-1∴=.故選A.8、B【解題分析】

先找出滑雪項目圖案的張數,結合5張形狀、大小、質地均相同的卡片,再根據概率公式即可求解.【題目詳解】∵有5張形狀、大小、質地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.【題目點撥】本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數與總情況數之比.9、D【解題分析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【題目詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【題目點撥】本題主要考查的是二次根式的混合運算,估算無理數的大小,利用夾逼法估算出的大小是解題的關鍵.10、B【解題分析】

根據平方差公式計算即可得解.【題目詳解】,故選:B.【題目點撥】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.11、D【解題分析】

根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【題目詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【題目點撥】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.12、B【解題分析】

根據S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【題目詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【題目點撥】本題考查矩形的性質、勾股定理、三角形的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題,學會用面積法解決有關線段問題,屬于中考常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x(x+2)(x﹣2)【解題分析】試題分析:首先提取公因式x,進而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用.14、7【解題分析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.15、4【解題分析】

根據“距離坐標”和平面直角坐標系的定義分別寫出各點即可.【題目詳解】距離坐標是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【題目點撥】本題考查了點的坐標,理解題意中距離坐標是解題的關鍵.16、1.【解題分析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數系數k的幾何意義,以及運用待定系數法求反比例函數解析式,根據△AOD的面積為1列出關系式是解題的關鍵.17、1【解題分析】

根據平移規律“左加右減,上加下減”填空.【題目詳解】解:將拋物線y=(x+m)1向右平移1個單位后,得到拋物線解析式為y=(x+m-1)1.其對稱軸為:x=1-m=0,解得m=1.故答案是:1.【題目點撥】主要考查的是函數圖象的平移,用平移規律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式.18、1【解題分析】

由旋轉的性質可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質可求∠ACA'=1°=∠B′CB.【題目詳解】解:∵把△ABC繞點C順時針旋轉得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【題目點撥】本題考查了旋轉的性質,熟練運用旋轉的性質是本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(10-4)米【解題分析】

延長OC,AB交于點P,△PCB∽△PAO,根據相似三角形對應邊比例相等的性質即可解題.【題目詳解】解:如圖,延長OC,AB交于點P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應該設計為()米.20、(1)見解析;(1)1【解題分析】

(1)根據角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【題目詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【題目點撥】本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.21、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解題分析】

(1)根據統計表收集數據可求a,b,再根據中位數、眾數的定義可求m,n;(2)達標的學生人數=總人數×達標率,依此即可求解;(3)本題需先求出閱讀課外書的總時間,再除以平均閱讀一本課外書的時間即可得出結果.【題目詳解】解:(1)由統計表收集數據可知a=5,b=4,m=81,n=81;(2)(人).答:估計達標的學生有300人;(3)80×52÷260=16(本).答:估計該校學生每人一年(按52周計算)平均閱讀16本課外書.【題目點撥】本題主要考查統計表以及中位數,眾數,估計達標人數等,能夠從統計表中獲取有效信息是解題的關鍵.22、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點坐標為(,)或(,﹣).【解題分析】

(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對稱的性質得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據含30度的直角三角形三邊的關系表示出A′H,EH即可得到A′的坐標;②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時A′點的坐標為(2,),E(1,0),然后通過計算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(3)討論:當A′B⊥BE時,四邊形A′BEP為矩形,利用點A′和點B的橫坐標相同得到t?1=3,解方程求出t得到A′(3,),再利用矩形的性質可寫出對應的P點坐標;當A′B⊥EA′,如圖4,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,先確定此時A′點的坐標,然后利用點的平移確定對應P點坐標.【題目詳解】(1)當y=0時,﹣x2+x+=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),設直線l的解析式為y=kx+b,把A(﹣1,0),D(0,﹣)代入得,解得,∴直線l的解析式為y=﹣x﹣;(2)①作A′H⊥x軸于H,如圖,∵OA=1,OD=,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵點A關于直線l的對稱點為A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=EA′=t,A′H=EH=t,∴OH=OE+EH=t﹣1+t=t﹣1,∴A′(t﹣1,t);②把A′(t﹣1,t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,解得t1=0(舍去),t2=2,∴當點A′落在拋物線上時,直線l的運動時間t的值為2;此時四邊形A′BEF為菱形,理由如下:當t=2時,A′點的坐標為(2,),E(1,0),∵∠OEF=60°∴OF=OE=,EF=2OE=2,∴F(0,),∴A′F∥x軸,∵A′F=BE=2,A′F∥BE,∴四邊形A′BEF為平行四邊形,而EF=BE=2,∴四邊形A′BEF為菱形;(3)存在,如圖:當A′B⊥BE時,四邊形A′BEP為矩形,則t﹣1=3,解得t=,則A′(3,),∵OE=t﹣1=,∴此時P點坐標為(,);當A′B⊥EA′,如圖,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=A′Q=?t=t,∴t﹣1+t=3,解得t=,此時A′(1,),E(,0),點A′向左平移個單位,向下平移個單位得到點E,則點B(3,0)向左平移個單位,向下平移個單位得到點P,則P(,﹣),綜上所述,滿足條件的P點坐標為(,)或(,﹣).【題目點撥】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質、菱形的判定和矩形的性質;會利用待定系數法求函數解析式;理解坐標與圖形性質.23、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解題分析】

(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【題目詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),當y=0時,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當x=0時,y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【題目點撥】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質和等腰三角形的性質;會利用待定系數法求函數解析式;靈活應用等腰直角三角形的性質進行幾何計算;理解坐標與圖形性質,記住兩點間的距離公式.24、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解題分析】

(1)根據數軸即可得到a,b數值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【題目詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【題目點撥】本題主要考查了數軸,關鍵在于數形結合思想.25、(1),y=2x﹣1;(2).【解題分析】

(1)利用待定系數法即可解答;

(2)作MD⊥y軸,交y軸于點D,設點M的坐標為(x,2x-1),根據MB=MC,得到CD=BD,再列方程可求得x的值,得到點M的坐標【題目詳解】解:(1)把點A(4,3)代入函數得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴點B的坐標為(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y軸于點D.∵點M在一次函數y=2x﹣1上,∴設點M的坐標為(x,2x﹣1)則點D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴點M的坐標為.【題目點撥】本題考查了一次函數與反比例函數的交點,解決本題的關鍵是利用待定系數法求解析式.26、(1)證明見解析;(2).【解題分析】

(1)先根據直角三角形斜邊上中線的性質,得出DE=AB=AE,DF=AC=AF,再根據AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;

(2)根據等邊三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論