




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第二附屬中學2024屆中考數(shù)學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各數(shù)中,為無理數(shù)的是()A. B. C. D.2.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或3.如圖,將△ABC繞點C順時針旋轉,使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′4.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a(chǎn)6÷a3=a25.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.606.下列說法正確的是()A.﹣3是相反數(shù) B.3與﹣3互為相反數(shù)C.3與互為相反數(shù) D.3與﹣互為相反數(shù)7.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.58.如果一組數(shù)據(jù)1、2、x、5、6的眾數(shù)是6,則這組數(shù)據(jù)的中位數(shù)是()A.1 B.2 C.5 D.69.目前,世界上能制造出的最小晶體管的長度只有0.00000004m,將0.00000004用科學記數(shù)法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×10810.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE11.由4個相同的小立方體搭成的幾何體如圖所示,則它的主視圖是()A.B.C.D.12.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.14.函數(shù)y=的自變量x的取值范圍是_____.15.如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.16.如圖,二次函數(shù)y=a(x﹣2)2+k(a>0)的圖象過原點,與x軸正半軸交于點A,矩形OABC的頂點C的坐標為(0,﹣2),點P為x軸上任意一點,連結PB、PC.則△PBC的面積為_____.17.某公司銷售一種進價為21元的電子產(chǎn)品,按標價的九折銷售,仍可獲利20%,則這種電子產(chǎn)品的標價為_________元.18.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在菱形ABCD中,E、F分別為AD和CD上的點,且AE=CF,連接AF、CE交于點G,求證:點G在BD上.20.(6分)如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.判斷直線MN與⊙O的位置關系,并說明理由;若OA=4,∠BCM=60°,求圖中陰影部分的面積.21.(6分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)求A,B兩種型號的電風扇的銷售單價.若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.22.(8分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;(1)攪勻后,從中任意取一個球,標號為正數(shù)的概率是;(2)攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.23.(8分)某校對學生就“食品安全知識”進行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數(shù).24.(10分)如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.試猜想線段BG和AE的數(shù)量關系是_____;將正方形DEFG繞點D逆時針方向旋轉α(0°<α≤360°),①判斷(1)中的結論是否仍然成立?請利用圖2證明你的結論;②若BC=DE=4,當AE取最大值時,求AF的值.25.(10分)先化簡,再求值:,其中x=,y=.26.(12分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)27.(12分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調(diào)查,根據(jù)學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調(diào)查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調(diào)查學生的人數(shù),并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數(shù);(3)已知該校有1500名學生,估計該校學生對政策內(nèi)容了解程度達到A等的學生有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無理數(shù),故選D.2、A【解題分析】
根據(jù)方程有兩個相等的實數(shù)根結合根的判別式即可得出關于k的方程,解之即可得出結論.【題目詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【題目點撥】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.3、C【解題分析】
根據(jù)旋轉的性質(zhì)求解即可.【題目詳解】解:根據(jù)旋轉的性質(zhì),A:∠與∠均為旋轉角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結論,故答案:C.【題目點撥】本題主要考查三角形旋轉后具有的性質(zhì),注意靈活運用各條件4、B【解題分析】分析:本題考察冪的乘方,同底數(shù)冪的乘法,積的乘方和同底數(shù)冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.5、B【解題分析】
有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【題目詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【題目點撥】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.6、B【解題分析】
符號不同,絕對值相等的兩個數(shù)互為相反數(shù),可據(jù)此來判斷各選項是否正確.【題目詳解】A、3和-3互為相反數(shù),錯誤;B、3與-3互為相反數(shù),正確;C、3與互為倒數(shù),錯誤;D、3與-互為負倒數(shù),錯誤;故選B.【題目點撥】此題考查相反數(shù)問題,正確理解相反數(shù)的定義是解答此題的關鍵.7、D【解題分析】【分析】先對括號內(nèi)的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【題目詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.8、C【解題分析】分析:根據(jù)眾數(shù)的定義先求出x的值,再把數(shù)據(jù)按從小到大的順序排列,找出最中間的數(shù),即可得出答案.詳解:∵數(shù)據(jù)1,2,x,5,6的眾數(shù)為6,∴x=6,把這些數(shù)從小到大排列為:1,2,5,6,6,最中間的數(shù)是5,則這組數(shù)據(jù)的中位數(shù)為5;故選C.點睛:本題考查了中位數(shù)的知識點,將一組數(shù)據(jù)按照從小到大的順序排列,如果數(shù)據(jù)的個數(shù)為奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)為偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).9、C【解題分析】
科學記數(shù)法的表示形式為a×10的形式,其中1≤a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】0.00000004=4×10,故選C【題目點撥】此題考查科學記數(shù)法,難度不大10、D【解題分析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.11、A【解題分析】試題分析:幾何體的主視圖有2列,每列小正方形數(shù)目分別為2,1.故選A.考點:三視圖視頻12、A【解題分析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內(nèi)角和定理以及多邊形的外角和定理二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m<﹣1.【解題分析】
根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【題目詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.14、x≥﹣且x≠1【解題分析】分析:根據(jù)被開方數(shù)大于等于0,分母不等于0列式求解即可.詳解:根據(jù)題意得2x+1≥0,x-1≠0,解得x≥-且x≠1.故答案為x≥-且x≠1.點睛:本題主要考查了函數(shù)自變量的取值范圍的確定,根據(jù)分母不等于0,被開方數(shù)大于等于0列式計算即可,是基礎題,比較簡單.15、1.【解題分析】
由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【題目詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【題目點撥】此題考查了切線的性質(zhì),切線長定理,等腰三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握定理及性質(zhì)是解本題的關鍵.16、4【解題分析】
根據(jù)二次函數(shù)的對稱性求出點A的坐標,從而得出BC的長度,根據(jù)點C的坐標得出三角形的高線,從而得出答案.【題目詳解】∵二次函數(shù)的對稱軸為直線x=2,∴點A的坐標為(4,0),∵點C的坐標為(0,-2),∴點B的坐標為(4,-2),∴BC=4,則.【題目點撥】本題主要考查的是二次函數(shù)的對稱性,屬于基礎題型.理解二次函數(shù)的軸對稱性是解決這個問題的關鍵.17、28【解題分析】設這種電子產(chǎn)品的標價為x元,由題意得:0.9x?21=21×20%,解得:x=28,所以這種電子產(chǎn)品的標價為28元.故答案為28.18、【解題分析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解題分析】
先連接AC,根據(jù)菱形性質(zhì)證明△EAC≌△FCA,然后結合中垂線的性質(zhì)即可證明點G在BD上.【題目詳解】證明:如圖,連接AC.∵四邊形ABCD是菱形,∴DA=DC,BD與AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA,∴△EAC≌△FCA,∴∠ECA=∠FAC,∴GA=GC,∴點G在AC的中垂線上,∴點G在BD上.【題目點撥】此題重點考察學生對菱形性質(zhì)的理解,掌握菱形性質(zhì)和三角形全等證明方法是解題的關鍵.20、(1)相切;(2).【解題分析】試題分析:(1)MN是⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據(jù)S陰=S扇形OAC﹣S△OAC計算即可.試題解析:(1)MN是⊙O切線.理由:連接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切線.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S陰=S扇形OAC﹣S△OAC=.考點:直線與圓的位置關系;扇形面積的計算.21、(1)A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺;(2)A種型號的電風扇最多能采購10臺;(3)在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【解題分析】
(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,根據(jù)3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解;(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺,根據(jù)金額不多余5400元,列不等式求解;(3)設利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實現(xiàn)目標.【題目詳解】(1)設A,B兩種型號電風扇的銷售單價分別為x元/臺、y元/臺.依題意,得解得答:A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺.(2)設采購A種型號的電風扇a臺,則采購B種型號的電風扇(30-a)臺.依題意,得200a+170(30-a)≤5400,解得a≤10.答:A種型號的電風扇最多能采購10臺.(3)依題意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【題目點撥】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系和不等關系,列方程組和不等式求解.22、(1);(2)【解題分析】【分析】(1)直接運用概率的定義求解;(2)根據(jù)題意確定k>0,b>0,再通過列表計算概率.【題目詳解】解:(1)因為1、-1、2三個數(shù)中由兩個正數(shù),所以從中任意取一個球,標號為正數(shù)的概率是.(2)因為直線y=kx+b經(jīng)過一、二、三象限,所以k>0,b>0,又因為取情況:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經(jīng)過一、二、三象限的概率是.【題目點撥】本題考核知識點:求規(guī)概率.解題關鍵:把所有的情況列出,求出要得到的情況的種數(shù),再用公式求出.23、(1),補全條形統(tǒng)計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數(shù)為135人。【解題分析】試題分析:(1)由統(tǒng)計圖中的信息可知,B組學生有32人,占總數(shù)的40%,由此可得被抽查學生總人數(shù)為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學生,占總數(shù)的12÷80×100%=15%,結合全校總人數(shù)為900可得900×15%=135(人),即全校“非常了解”“食品安全知識”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學生對“食品安全知識”非常了解的人數(shù)為135人.24、(1)BG=AE.(2)①成立BG=AE.證明見解析.②AF=.【解題分析】
(1)由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結論;
(2)①如圖2,連接AD,由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結論;
②由①可知BG=AE,當BG取得最大值時,AE取得最大值,由勾股定理就可以得出結論.【題目詳解】(1)BG=AE.理由:如圖1,∵△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四邊形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案為BG=AE;(2)①成立BG=AE.理由:如圖2,連接AD,∵在Rt△BAC中,D為斜邊BC中點,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.
∵四邊形EFGD為正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;
②∵BG=AE,∴當BG取得最大值時,AE取得最大值.如圖3,當旋轉角為270°時,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF==,∴AF=2.【題目點撥】本題考查的知識點是全等三角形的判定與性質(zhì)及勾股定理及正方形的性質(zhì)和等腰直角三角形,解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì)及勾股定理以及正方形的性質(zhì)和等腰直角三角形.25、x+y,.【解題分析】試題分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入即可解答本題.試題解析:原式===x+y,當x=,y==2時,原式=﹣2+2=.26、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解題分析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問題.【題目詳解】(1)CF與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025房屋出租合同范本中介版
- 2025關于短期勞動合同的新政策
- 2025合作伙伴續(xù)簽合同申請書
- 離婚冷靜期離婚協(xié)議書范本
- 員工工資薪酬保密協(xié)議書范本
- 知識產(chǎn)權資源授權使用協(xié)議范本
- 二手商鋪購買合同
- 2024年份4月份跨境微小衛(wèi)星協(xié)議發(fā)射失敗賠償計算模型
- 2025人力資源資料合同續(xù)約審批簽訂制度
- 車輛入股協(xié)議書范文
- 【新課標】Unit 1 C Story time第7課時單元整體課件
- 12《風向和風力》教學設計-2024-2025學年科學四年級上冊青島版
- 2024年度企業(yè)所得稅匯算清繳最 新稅收政策解析及操作規(guī)范專題培訓(洛陽稅務局)
- 2024年司法鑒定科學研究院事業(yè)編制招聘筆試真題
- 2025年公務員考試《公共基礎知識》全真模擬試題1000題及答案
- 啄木鳥簡介課件
- 第5單元《溫暖的家》課件 花城版音樂一年級下冊
- 晉城低空經(jīng)濟產(chǎn)業(yè)園建設項目
- 電子政務平臺的維護與技術支持策略
- 蒙臺梭利課程模式課堂
- 2025年度文化產(chǎn)業(yè)項目結算扶持政策合同
評論
0/150
提交評論