




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
FinancialRiskManagementHaibinXieSchoolofBankingandFinance,UniversityofInternationalBusinessandEconomicsOffice:Boxue708E-mail:Tel:FRM極值理論ExtremeValueTheoryEVTandVaR1BaselRulesforBacktesting2ExtremeValueTheoryandVaRFRM極值理論BaselRulesforBacktestingTheBaselCommitteeputinplaceaframeworkbasedonthedailybacktestingofVaR.Havinguptofourexceptionsisacceptable,whichdefinesagreenzone.Ifthenumberofexceptionsisfiveormore,thebankfallsintoayelloworredzoneandincursaprogressivepenalty,whichisenforcedwithahighercapitalcharge.Roughly,thecapitalchargeisexpressedasamultiplierofthe10-dayVaRatthe99%levelofconfidence.Thenormalmultiplierkis3.Afteranincursionintotheyellowzone,themultiplicativefactor,k,isincreasedfrom3to4,orplusfactordescribedintheTableinthenextslideFRM極值理論TheBaselPenaltyZonesZoneNumberofExceptionsPotentialincreaseinKGreen0to40.00Yellow50.460.570.6580.7590.85Red≥101FRM極值理論Appendix1WhynormalmultiplierK=3ByChebyshevinequality:P(|x-μ|>λσ)≤1/λ2.Supposesymmetricdistribution,wegetP(x-μ<-λσ)≤1/2λ2,whichdeterminestheMaxofVaR,VaRmx=λσ.Lettheconfidencelevelbe0.99,weget1/2λ2=0.01,fromwhich,wegetλ=7.071.SupposetheusualVaRiscalculatedundertheassumptionofnormaldistribution,wegetVaRN=2.326σ.Thus,weneedamultiplierifnormaldistributionisnotsatisfied.Themultiplier,K=λσ/2.36σ=3.03FRM極值理論Appendix2VaRParameters:TomeasuretheVaR,wefirstneedtodefinetwoquantitativeparameters:theconfidencelevelandthehorizonConfidenceLevel:Thehighertheconfidencelevel,thegreatertheVaRmeasure!Itisnotclear,however,atwhatconfidencelevelshouldonestopHorizon:Thelongerthehorizon,thegreatertheVaRmeasure.Itisnotclear,however,atwhathorizonshouldonestop.VaRParameters:SomerulesforconfidencelevelandhorizonselectionThechoiceoftheconfidencelevelandhorizondependontheintendedusefortheriskmeasures.Forbacktestingpurposes,alowconfidencelevelandashorthorizonisnecessary;forcapitaladequacypurposes,ahighconfidencelevelandalonghorizonarerequired.Inpractice,theseconflictingobjectivescanbeaccommodatedbyacomplexrule,asisthecasefortheBaselmarketriskchargeFRM極值理論ExtremeValueTheoryVaRisallaboutthetailbehavioroflossdistribution,A.K.A,weareonlyinterestedinsomeextremevalueofadistribution.D.V.GnedenkoandEVT7Бори?сВлади?мировичГнеде?нко;January1,1912–December27,1995FRM極值理論GeneralizedParetoDistributionThishastwoparametersx(theshapeparameter)andb(thescaleparameter)Bydefinition,weexpectbtobepositive.ThecumulativedistributionisFRM極值理論GeneralizedParetoDistributionWhenunderlingdistributionofvisnormal,wehave.increasesasthetailofvgetsheavierFormostfinancialdata,in[0.1,0.4]Thek-thmomentofunderlingr.v.isfiniteifFRM極值理論MaximumLikelihoodEstimatorTheobservations,xi,aresortedindescendingorder.SupposethattherearenuobservationsgreaterthanuWechoosexandbtomaximizeFRM極值理論MaximumLikelihoodEstimatorConstraintsxandbaresupposedtobepositive,althoughxnotrequiredtobepositivebythedefinitionofGPD.Negativexindicates:LightertailoftheunderlingdistributioncomparedwithnormalInappropriatevalueofuischosenFRM極值理論FromparameterstotailofvBydefinition:ThereforeAgainsemi-parametricFRM極值理論Whypowerlaw?FRM極值理論ExtremeValueTheory——VaR
FRM極值理論ExpectedShortFallFRM極值理論BlockMaximaModelsDistributionofthelargestvariableAsngoestoinfinity,andthesupportofris[-inf,inf]WeneedtoblowupthevariablewithanormalizationThelimitingdistributionisGeneralizedExtremeValueDistributionFRM極值理論BlockMaximaModelsGeneralizedExtremeValueDistributionVaRunderGEVdistributionAnythingwrong?FRM極值理論BlockMaximaModelsisthedistributionofthelargestvariablenotthevariableitself.The(1-q)thquantileofrisequivalentto(1-q)^nthquantileofr(n)ThecorrectVaRis18FRM極值理論BlockMaximaModelsEstimationBydefinitionofF*,weonlyhaveONEobservationtoestimatethreeparametersWay-outApplyGEVdistributiontomaximumreturnswithineachblockMLESelectionofnGEVisalimitproperty,naslargeaspossibleForgivenT,g=T/nwheregistheeffectivenumberofobservationsforparameterestimationBalance19FRM極值理論MultipleperiodVaRUnderEVTthemultipleperiodVaRisnotjustsquarerootoftimehorizon.Whysquarerootoftimehorizon?Underpowerlaw Fellershowsthattailriskisapproximatelyadditive,therefore:Itiseasytoseethat 20FRM極值理論CoherentRiskMeasures1Monotonicity:ifX1<X2,2Translationinvariance:3Homogeneity:4Subadditivity:FRM極值理論ExerciseBasedona90%confidencelevel,howmanyexceptionsinbacktestingaVaRwouldbeexpectedovera250-daytradingyear?a.10b.15c.25d.50FRM極值理論Alarge,internationalbankhasatradingbookwhosesizedependsontheopportunitiesperceivedbyitstraders.Themarketriskmanagerestimatestheone-dayVaR,atthe95%confidencelevel,tobe$50million.Youareaskedtobeevaluatehowgoodajobthemanagerisdoinginestimatingtheone-dayVaR.Whichofthefollowingwouldbethemostconvincingevidencethatthemanagerisdoingapoorjob,assumingthatthelossesareidenticalandindependentlydistributed(i.i.d)?a.Overthepast250days,thereareeightexceptionsb.Overthepast250days,thelargestlossis$500millionc.Overthepast250days,themeanlossis$60milliond.Overthepast250days,thereisnoexceptionFRM極值理論WhichofthefollowingproceduresisessentialinvalidatingtheVaRestimates?a.stress-testingb.scenarioanalysisc.backtestingd.Onceapprovedbyregulators,nofurthervalidationisrequiredFRM極值理論TheMarketRiskAmendmenttotheBaselCapitalAccorddefinestheyellowzoneasthefollowingrangeofexceptionsoutof250observationsa.3to7b.5to9c.6to9d.6to10FRM極值理論Extremevaluetheoryprovidesvaluableinsightaboutthetailsofreturndistributions.WhichofthefollowingstatementsaboutEVTanditsapplicationsisincorrect?a.Thepeaksoverthreshold,whichthendeterminesthenumberofobservedexceedances;thethresholdmustbesufficientlyhightoapplythetheory,butsufficientlylowsothatthenumberofobservedexceedancesisareliableestimate.b.EVThighlightsthatdistributionsjustifiedbycentrallimittheoremcanbeusedforextremevalueestimationc.EVTestimatesaresubjecttoconsiderablemodelrisk,andEVTresultsareofenverysensitivetothepreciseassumptionsmaded.Becauseobserveddatainthetailsofdistributionislimited,EVestimatescanbeverysensitivetosmallsampleeffectsandotherbiasesFRM極值理論Whichofthefollowingstatementsregardingextremevaluetheoryisincorrect?a.IncontrasttoconventionalapproachesforestimatingVaR,EVTconsidersonlythetailbehaviorofthedistributionb.ConversationalapproachesforestimatingVaRthatassumethatthedistributionof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國家電投所屬中國電力招聘4人筆試參考題庫附帶答案詳解
- 六年級下美術教學設計-色彩風景-浙教版
- 人教版七年級地理上冊第二章第二節《海陸的變遷》教學設計
- 人教版九年級化學上冊同步教學設計:第五單元課題1 質量守恒定律(2課時)(2份打包)
- 九年級化學上冊 5.2.2 物質的組成表示-化學式教學設計 (新版)北京課改版
- 人教部編版五年級下冊中國的世界文化遺產教學設計
- 冬季車輛安全培訓
- 九年級英語下冊 Unit 6 Entertainment and Friendship Topic 2 Who is your favorite character in literature Section B教學設計 (新版)仁愛版
- 三年級品德與社會下冊 介紹我們的學校(一)教學設計 未來版
- 2024內蒙古佰特冶金建材有限公司發布招聘筆試參考題庫附帶答案詳解
- 2025時政試題及答案(100題)
- 2024-2025學年統編版七年級語文下冊第四單元檢測A卷(原卷+答案)
- 初二勞技試題及答案下冊
- 補全對話10篇(新疆中考真題+中考模擬)(解析版)
- 市場集中度與消費者行為-全面剖析
- 2025-2030中國防火材料行業深度調研及投資前景預測研究報告
- 2024年浙江錢江生物化學股份有限公司招聘筆試真題
- 新22J01 工程做法圖集
- 2025年中國影像測量機市場調查研究報告
- 外研版(三起)(2024)三年級下冊英語Unit 2 Know your body單元備課教案
- 《人工智能技術應用導論(第2版)》高職全套教學課件
評論
0/150
提交評論