




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
E-mail:
xuxin@第十三章 無(wú)
窮
級(jí)
數(shù)無(wú)窮級(jí)數(shù)是微積分學(xué)的重要組成部分,它在函數(shù)表示、數(shù)值計(jì)算、研究函數(shù)性質(zhì)、微分方程的求解等諸多方面,都有著不可替代的作用。無(wú)論對(duì)數(shù)學(xué)理論本身,還是在科學(xué)技術(shù)的應(yīng)用中,無(wú)窮級(jí)數(shù)都是一個(gè)有效的工具。本章內(nèi)容由常數(shù)項(xiàng)級(jí)數(shù)、冪級(jí)數(shù)和傅立葉級(jí)數(shù)三部分組成。主要介紹無(wú)窮級(jí)數(shù)的基本概念、基本性質(zhì)、斂散性的審斂法、冪級(jí)數(shù)以及將函數(shù)展開為冪級(jí)數(shù)和傅立葉級(jí)數(shù)的方法及其應(yīng)用。E-mail:
xuxin@數(shù)項(xiàng)級(jí)數(shù)的基本概念數(shù)項(xiàng)級(jí)數(shù)的性質(zhì)柯西(cauchy)收斂準(zhǔn)則§1
數(shù)項(xiàng)級(jí)數(shù)的概念與性質(zhì)E-mail:
xuxin@若有一個(gè)無(wú)窮數(shù)列u1,u2,u3,
,un,
此無(wú)窮數(shù)列構(gòu)成下列表達(dá)式u1
+ u2
+ u3
+
+ un
+
(1)稱以上表達(dá)式為(常數(shù)項(xiàng))無(wú)窮級(jí)數(shù),簡(jiǎn)稱(常數(shù)項(xiàng))級(jí)數(shù),記為1.無(wú)窮級(jí)數(shù)的概念其中第n項(xiàng)un叫作級(jí)數(shù)的一般項(xiàng)或通項(xiàng).E-mail:
xuxin@E-mail:
xuxin@E-mail:
xuxin@由上我們便得到一個(gè)數(shù)列,從形式上=不難知道 ,以前我們學(xué)過數(shù)列的收斂與發(fā)散,進(jìn)而就不難得出級(jí)數(shù)的收斂與發(fā)散的概念。換而言之,有限個(gè)數(shù)相加為一數(shù),無(wú)窮多個(gè)數(shù)相加是否仍為一個(gè)數(shù)呢?問
題E-mail:
xuxin@則稱無(wú)窮級(jí)數(shù)若定義1
若級(jí)數(shù)的部分和數(shù)列收斂,設(shè)其極限值為收斂.s稱為此級(jí)數(shù)的和.且有無(wú)窮多項(xiàng)求和問題轉(zhuǎn)化成數(shù)列{sn}的極限無(wú)極限,則稱無(wú)窮級(jí)數(shù)問題
發(fā)散.E-mail:
xuxin@注意1:稱為級(jí)數(shù)的余項(xiàng),為 代替s所產(chǎn)生的誤差
..E-mail:
xuxin@注意2:到目前為止,已了解的級(jí)數(shù)的基本概念,特別了解了級(jí)數(shù)部分和數(shù)列的收斂與發(fā)散性(斂散性)是由其的斂散性所決定的。確切地說(shuō),兩者斂散性是相同的E-mail:
xuxin@E-mail:
xuxin@解:(1)若,則部分和E-mail:
xuxin@則級(jí)數(shù)發(fā)散。則級(jí)數(shù)收斂;E-mail:
xuxin@當(dāng)n為奇數(shù)或偶數(shù)時(shí),
sn為a或0,則 的極限不存在,級(jí)數(shù)發(fā)散.小結(jié):等比級(jí)數(shù)的公比,級(jí)數(shù)收斂,,級(jí)數(shù)發(fā)散.E-mail:
xuxin@例3
證明調(diào)和級(jí)數(shù)發(fā)散.證:為估計(jì)調(diào)和級(jí)數(shù)的部分和sn,我們?cè)趨^(qū)間[1,+∞]上引入函數(shù)對(duì)于任一x屬于[1,+∞],存在自然數(shù)k,使得,于是對(duì)上式兩端在區(qū)間[k,k+1]上取定積分當(dāng)時(shí),.顯然不存在.故原級(jí)數(shù)發(fā)散.E-mail:
xuxin@收斂,則它的一般項(xiàng)趨于零,即2.數(shù)項(xiàng)級(jí)數(shù)基本性質(zhì)性質(zhì)1:(收斂的必要條件)如果級(jí)數(shù)E-mail:
xuxin@注1:若反之,則不一定成立。,原級(jí)數(shù)不一定收斂。.如調(diào)和級(jí)數(shù) 發(fā)散,但即E-mail:
xuxin@注2:收斂的必要條件常用來(lái)證明級(jí)數(shù)發(fā)散。,則原級(jí)數(shù)即若 一定不收斂.E-mail:
xuxin@性質(zhì)2
若級(jí)數(shù)收斂于和s,則它的各項(xiàng)同乘以一個(gè)常數(shù)k,所得的級(jí)數(shù)也收斂,且其和為ks級(jí)數(shù)的每一項(xiàng)同乘以不為零的常數(shù)后,其斂散性不變E-mail:
xuxin@,分別收斂于,性質(zhì)3
如果級(jí)數(shù)即兩個(gè)收斂級(jí)數(shù)的和差仍為收斂級(jí)數(shù)E-mail:
xuxin@注1:稱為級(jí)數(shù)與注2:
若級(jí)數(shù)和發(fā)散。(證明)的和與差.之中有一個(gè)收斂,另一個(gè)發(fā)散,則問:若兩個(gè)都發(fā)散,情況又如何呢?(思考)E-mail:
xuxin@性質(zhì)4
在級(jí)數(shù)前面加上或去掉有限項(xiàng),不影響級(jí)數(shù)的斂散性,但其和可能改變.只是當(dāng)級(jí)數(shù)收斂時(shí),加上有限項(xiàng)或去掉有限項(xiàng),一般會(huì)改變級(jí)數(shù)的和.E-mail:
xuxin@性質(zhì)5:
收斂級(jí)數(shù)加括號(hào)后(不改變各項(xiàng)順序)所產(chǎn)生的級(jí)數(shù)仍收斂于原來(lái)級(jí)數(shù)的和.注1:
這里所謂加括號(hào),就是在不改變各項(xiàng)的順序的情況下,將其某項(xiàng)放在一起作為新的項(xiàng),而產(chǎn)生的是發(fā)散的,
是收斂的.級(jí)數(shù).當(dāng)然,加括號(hào)的方法是有無(wú)窮多種的.注2:
若級(jí)數(shù)在加括號(hào)后所得的級(jí)數(shù)發(fā)散,那么原級(jí)數(shù)發(fā)散.但是,某級(jí)數(shù)在加括號(hào)后所得的級(jí)數(shù)收斂,則原級(jí)數(shù)未必收斂.也就是說(shuō):發(fā)散的級(jí)數(shù)加括號(hào)后可能產(chǎn)生收斂的級(jí)數(shù).例如:但E-mail:
xuxin@的斂散性。例4
判別級(jí)數(shù)解:由于級(jí)數(shù)的幾何級(jí)數(shù),且是公比為所以收斂由性質(zhì)2可知也收斂E-mail:
xuxin@的斂散性.例5
判別級(jí)數(shù)解:
因級(jí)數(shù)與級(jí)數(shù)均收斂由性質(zhì)3可知收斂.E-mail:
xuxin@3.柯西(cauchy)收斂準(zhǔn)則E-mail:
xuxin@E-mail:
xuxin@E-mail:
xuxin@E-mail:
xuxin@所以對(duì)于任一給定的正數(shù)
,取自然數(shù)則當(dāng) 時(shí),對(duì)任意自然數(shù)p,都有成立由柯西收斂定理,級(jí)數(shù)收斂E-mail:
xuxin@正項(xiàng)級(jí)數(shù)的收斂判別法交錯(cuò)級(jí)數(shù)的收斂判別法絕對(duì)收斂與條件收斂任意項(xiàng)級(jí)數(shù)的收斂判別法§13.2
數(shù)項(xiàng)級(jí)數(shù)的收斂判別法E-mail:
xuxin@前面所講的常數(shù)項(xiàng)級(jí)數(shù)中,各項(xiàng)均可是正數(shù),負(fù)數(shù)或零。正項(xiàng)級(jí)數(shù)是其中一種特殊情況。如果級(jí)數(shù)中各項(xiàng)是由正數(shù)或零組成,這就稱該級(jí)數(shù)為正項(xiàng)級(jí)數(shù)。同理也有負(fù)項(xiàng)級(jí)數(shù)。而負(fù)項(xiàng)級(jí)數(shù)每一項(xiàng)都乘以后即變成正項(xiàng)級(jí)數(shù),兩者有著一些相仿的性質(zhì),正項(xiàng)級(jí)數(shù)在級(jí)數(shù)中占有很重要的地位。很多級(jí)數(shù)的斂散性討論都會(huì)轉(zhuǎn)為正項(xiàng)級(jí)數(shù)的斂散性.E-mail:
xuxin@定義
設(shè)級(jí)數(shù)為正項(xiàng)級(jí)數(shù).顯然,正項(xiàng)級(jí)數(shù)的部分和{sn}數(shù)列是單調(diào)增加的,即1.正項(xiàng)級(jí)數(shù)的收斂判別法E-mail:
xuxin@定理
正項(xiàng)級(jí)數(shù)收斂收斂收斂有界.有界.是一個(gè)單調(diào)上升數(shù)列收斂.證:“
”“
”
有界,又
存在E-mail:
xuxin@證明:這是一個(gè)正項(xiàng)級(jí)數(shù),其部分和為:故{sn}有界,所以原級(jí)數(shù)收斂.E-mail:
xuxin@與定理1(比較判別法)設(shè)且是兩個(gè)正項(xiàng)級(jí)數(shù),那么收斂。如果如果收斂,則發(fā)散,則和 分別表示
和發(fā)散。的部分和,證:設(shè)顯然由(1)收斂有界有界也收斂.(2)發(fā)散無(wú)界無(wú)界也發(fā)散.E-mail:
xuxin@例2的斂
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年直流傳動(dòng)礦井提升機(jī)資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 建筑垃圾處理場(chǎng)排放量控制補(bǔ)充協(xié)議
- 跨界購(gòu)物中心運(yùn)動(dòng)品牌區(qū)聯(lián)合運(yùn)營(yíng)管理合同
- 知識(shí)產(chǎn)權(quán)收益分割與產(chǎn)業(yè)布局合作協(xié)議
- 法律翻譯服務(wù)合同解除補(bǔ)充協(xié)議
- 社區(qū)環(huán)保材料回收站場(chǎng)地租賃及環(huán)保設(shè)備采購(gòu)與環(huán)保產(chǎn)業(yè)市場(chǎng)開發(fā)協(xié)議
- 旅游平臺(tái)內(nèi)容更新與維護(hù)服務(wù)合同
- 網(wǎng)絡(luò)直播數(shù)字調(diào)音臺(tái)音效庫(kù)租賃與后期制作服務(wù)協(xié)議
- 藝術(shù)教育機(jī)構(gòu)鋼琴教師團(tuán)隊(duì)績(jī)效評(píng)估合同
- 腸胃理療師專項(xiàng)服務(wù)合同
- 2025年安全生產(chǎn)月主題培訓(xùn)課件:如何查找身邊安全隱患
- 2024年寧夏銀川公開招聘社區(qū)工作者考試試題答案解析
- 大巴車駕駛員安全培訓(xùn)
- 夜間行車培訓(xùn)課件
- 模塊二 專題三 電學(xué)專題(四):電學(xué)比值類計(jì)算 課件北京東直門中學(xué)2025年中考物理一輪復(fù)習(xí)
- 四道心理測(cè)試題及答案
- 小學(xué)生佩戴頭盔安全教育
- 2025年快遞業(yè)務(wù)員快件處理等職業(yè)技能資格知識(shí)考試題(附答案)
- DB46 T 131-2008 抗風(fēng)浪深水網(wǎng)箱養(yǎng)殖技術(shù)規(guī)程 標(biāo)準(zhǔn)
- 光伏電站運(yùn)維投標(biāo)方案(技術(shù)方案)
- 2025年上海市各區(qū)中考語(yǔ)文一模卷【記敘文閱讀題】匯集練附答案解析
評(píng)論
0/150
提交評(píng)論