江蘇省南大附中2023屆高中畢業生二月調研測試數學試題_第1頁
江蘇省南大附中2023屆高中畢業生二月調研測試數學試題_第2頁
江蘇省南大附中2023屆高中畢業生二月調研測試數學試題_第3頁
江蘇省南大附中2023屆高中畢業生二月調研測試數學試題_第4頁
江蘇省南大附中2023屆高中畢業生二月調研測試數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南大附中2023屆高中畢業生二月調研測試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數列中,,則與的等比中項是()A.±4 B.4 C. D.2.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路3.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,24.執行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.5.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.26.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.67.數列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數列{an}的前100項的和S100=()A.132 B.299 C.68 D.998.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.9.3本不同的語文書,2本不同的數學書,從中任意取出2本,取出的書恰好都是數學書的概率是()A. B. C. D.10.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數,則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.11.設,若函數在區間上有三個零點,則實數的取值范圍是()A. B. C. D.12.已知復數z滿足i?z=2+i,則z的共軛復數是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i二、填空題:本題共4小題,每小題5分,共20分。13.等邊的邊長為2,則在方向上的投影為________.14.《易經》是中國傳統文化中的精髓,如圖是易經八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.15.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數為______.(用數字作答)16.已知,,且,若恒成立,則實數的取值范圍是____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若函數在是單調遞減的函數,求實數的取值范圍;(2)若,證明:.18.(12分)已知.(1)若,求函數的單調區間;(2)若不等式恒成立,求實數的取值范圍.19.(12分)已知函數.(1)求不等式的解集;(2)若存在實數,使得不等式成立,求實數的取值范圍.20.(12分)在中,角,,所對的邊分別為,,,且.求的值;設的平分線與邊交于點,已知,,求的值.21.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.22.(10分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用等比數列的性質可得,即可得出.【詳解】設與的等比中項是.

由等比數列的性質可得,.

∴與的等比中項

故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.2、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.3、C【解析】

先求出集合U,再根據補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.4、D【解析】循環依次為直至結束循環,輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環結構、偽代碼,其次要重視循環起點條件、循環次數、循環終止條件,更要通過循環規律,明確流程圖研究的數學問題,是求和還是求項.5、C【解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.6、C【解析】

根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.7、B【解析】

由為定值,可得,則是以3為周期的數列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數列,故,.故選:.【點睛】本題考查周期數列求和,屬于中檔題.8、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.9、D【解析】

把5本書編號,然后用列舉法列出所有基本事件.計數后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數學書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數學書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數計算概率.10、C【解析】

先確定摸一次中獎的概率,5個人摸獎,相當于發生5次試驗,根據每一次發生的概率,利用獨立重復試驗的公式得到結果.【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數,共有摸一次中獎的概率是,5個人摸獎,相當于發生5次試驗,且每一次發生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復試驗中恰好發生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題.11、D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.12、D【解析】

兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復數為1+2i,選D.【點睛】的共軛復數為二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立直角坐標系,結合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題意可知:,,,則:,,且,,據此可知在方向上的投影為.【點睛】本題主要考查平面向量數量積的坐標運算,向量投影的定義與計算等知識,意在考查學生的轉化能力和計算求解能力.14、【解析】

觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個,還有6個是1陰2陽和1陽2陰各3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。【詳解】八卦中陰線和陽線的情況為3線全為陽線的一個,全為陰線的一個,1陰2陽的3個,1陽2陰的3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。∴從8個卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:。【點睛】本題考查古典概型,解題關鍵是確定基本事件的個數。本題不能受八卦影響,我們關心的是八卦中陰線和陽線的條數,這樣才能正確地確定基本事件的個數。15、1【解析】

由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數為9+9+5=1,得解.【詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為5,綜合①②③得:不同的選法種數為9+9+5=1,故答案為:1.【點睛】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.16、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)求出導函數,由在上恒成立,采用分離參數法求解;(2)觀察函數,不等式湊配后知,利用時可證結論.【詳解】(1)因為在上單調遞減,所以,即在上恒成立因為在上是單調遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調遞減所以即所以.【點睛】本題考查用導數研究函數的單調性,考查用導數證明不等式.解題關鍵是把不等式與函數的結論聯系起來,利用函數的特例得出不等式的證明.18、(1)答案不唯一,具體見解析(2)【解析】

(1)分類討論,利用導數的正負,可得函數的單調區間.(2)分離出參數后,轉化為函數的最值問題解決,注意函數定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調遞減區間為,單調遞增區間為和.②當時,由,得由,得或此時的單調遞減區間為,單調遞增區間為和綜上:當時,單調遞減區間為,單調遞增區間為和當時,的單調遞減區間為,單調遞增區間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設,則令,得,(舍)當時,;當時,當變化時,,變化情況如下表:10單調遞增單調遞減∴當時,取得最大值,,∴.∴的取值范圍是.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究不等式的恒成立問題,屬于中檔題.19、(1);(2).【解析】

(1)將函數的解析式表示為分段函數,然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數的最大值,由題意得出,解此不等式即可得出實數的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述,不等式的解集;(2)當時,函數單調遞增,則;當時,函數單調遞減,則,即;當時,函數單調遞減,則.綜上所述,函數的最大值為,由題知,,解得.因此,實數的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數問題,考查分類討論思想的應用,考查運算求解能力,屬于中等題.20、;.【解析】

利用正弦定理化簡求值即可;利用兩角和差的正弦函數的化簡公式,結合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內角,故,,則,故,;(2)平分,設,則,,,,則,,又,則在中,由正弦定理:,.【點睛】本題考查正弦定理和兩角和差的正弦函數的化簡公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論