



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一種改進的高斯頻率域壓縮感知稀疏反演方法(英AbstractompressivesensingandsparseinversionmethodshavegainedasignificantamountofattentioninrecentyearsduetotheircapabilitytoaccuratelyreconstructsignalsfrommeasurementswithsignificantlylessdatathanpreviouslypossibleInthispaper,amodifiedGaussianfrequencydomaincompressivesensingandsparseinversionmethodisproposedwhichleveragestheprovenstrengthsofthetraditionalmethodtoenhanceitsaccuracyandperformance.Simulationresultsdemonstratethattheproposedmethodcanachieveahighersignal-to-noiseratioandabetterreconstructionqualitythanitstraditionalcounterpartwhilealsoreducingthecomputationalcomplexityoftheinversionprocedure.CompressivesensingCSisanemergingfieldthathasgarneredsignificantinterestinrecentyearsbecauseitleveragesthesparsityofsignalstoreducethenumberofmeasurementsrequiredtoaccuratelyreconstructthesignalThishasmanyadvantagesovertraditionalsignalprocessingmethodsincludingfasterdataacquisitiontimes,reducedpowerconsumptionandlowerdatastoragerequirements.CShasbeensuccessfullyappliedtoawiderangeoffields,includingmedicalimaging,wirelesscommunications,andsurveillance.OneofthemostcommonlyusedmethodsincompressivesensingistheGaussianfrequencydomaincompressivesensingandsparseinversionGFDCS)method.Inthismethod,compressivemeasurementsareacquiredbymultiplyingtheoriginalsignalwitharandomlygeneratedsensingmatrix.ThemeasurementsarethentransformedintothefrequencydomainusingtheFouriertransform,andthesparsesignalisreconstructedusingasparsitypromotingalgorithm.centyearsresearchershavemadenumerousimprovementstotheGFDCSmethod,withthegoalofimprovingitsreconstructionaccuracyreducingitscomputationalcomplexity,andenhancingitsrobustnesstonoiseInthispaper,weproposeamodifiedGFD-CSmethodthatcombinesseveraltechniquestoachievetheseobjectives.Theproposedmethodbuildsuponthewell-establishedGFD-CSmethodwithseveralkeymodificationsThefirstmodificationistheuseofahierarchicalsparsitypromotingalgorithmwhichpromotessparsityatboththesignallevelandthetransformlevel.Thisisachievedbypplyingthehierarchicalthresholdingtechniquetothecoefficientscorrespondingtothehigherfrequencycomponentsofthetransformedsignal.Thesecondmodificationistheuseofanovelerrorfeedbackmechanismwhichreducestheimpactofmeasurementnoiseonthereconstructedsignal.Specifically,theproposedmethodutilizesaniterativealgorithmthatupdatesthemeasurementerrorbasedonthedifferencebetweenthereconstructedsignalandthemeasuredsignal.Thisfeedbackmechanismeffectivelyincreasesthesignal-to-noiseratioofthereconstructedsignal,improvingitsaccuracyandrobustnesstonoise.Thethirdmodificationistheuseofalow-rankapproximationmethodwhichreducesthecomputationalcomplexityoftheinversionalgorithmwhilemaintainingreconstructionaccuracyThisisachievedbydecomposingthesensingmatrixintoaproductoftwolowerdimensionalmatriceswhichcanbesubsequentlyinvertedusingamoreefficientalgorithm.nResultsToevaluatetheeffectivenessoftheproposedmethod,weconductedsimulationsusingsyntheticdatasets.Threedifferentsignaltypeswereconsideredasinusoidalsignal,apulsesignal,andanimagesignalTheresultsofthesimulationswerecomparedtothoseobtainedusingthetraditionalGFD-CSmethod.ThesimulationresultsdemonstratethattheproposedmethodoutperformsthetraditionalGFDCSmethodintermsofsignal-to-noiseratioandreconstructionqualitySpecifically,theproposedmethodachievesahighersignalto-noiseratioandlowermeansquarederrorforallthreetypesofsignalsconsidered.Furthermore,theproposedmethodachievestheseresultswithareducedcomputationalcomplexitycomparedtothetraditionalmethod.nTheresultsofoursimulationsdemonstratetheeffectivenessoftheproposedmethodinenhancingtheaccuracyandperformanceoftheGFD-CSmethod.Thecombinationofsparsitypromotion,errorfeedback,ndlowrankapproximationtechniquessignificantlyimprovesthesignal
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電阻電容電感元件企業縣域市場拓展與下沉戰略研究報告
- 無縫鋼管(外購再加工)企業數字化轉型與智慧升級戰略研究報告
- 復合長絲紡絲卷繞機企業ESG實踐與創新戰略研究報告
- 直線移動式動力頭機床企業數字化轉型與智慧升級戰略研究報告
- 電動工具企業數字化轉型與智慧升級戰略研究報告
- 啤酒釀造設備企業ESG實踐與創新戰略研究報告
- 可靠性試驗設備企業縣域市場拓展與下沉戰略研究報告
- 大型扁鋼企業縣域市場拓展與下沉戰略研究報告
- 人美版一年級下冊《第3課 春天大舞臺》教學設計
- 2025年O3自動監測儀合作協議書
- 二年級下冊數學口算綜合練習題 (每頁100題)
- 湖北公務員面試模擬64
- 信息安全意識培訓課件
- 人教版數學八年級上冊:14-整式的乘法與因式分解-專題練習(附答案)
- Python試題庫(附參考答案)
- 2024年浙江省中考英語試題卷(含答案解析)
- 《糧食機械原理與應用》 課件全套 阮競蘭 1-11篩分除雜設備-色選設備
- 課程與教學論第三版 第八章 教學手段
- 泰興經濟開發區國有企業招聘筆試題庫2024
- 二年級蘇教版數學上冊《認識厘米》說課稿
- DL∕T 5509-2015 架空輸電線路覆冰勘測規程
評論
0/150
提交評論