




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省校級聯考2023年數學高二上期末聯考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的定義域為,若,則()A. B.C. D.2.圓截直線所得弦的最短長度為()A.2 B.C. D.43.已知函數,則()A.1 B.2C.3 D.54.某人忘了電腦屏保密碼的后兩位,但記得最后一位是1,3,5,7,9中的一個數字,倒數第二位是G,O,D中的一個字母,若他嘗試輸入密碼,則一次輸入就解開屏保的概率是()A. B.C. D.5.橢圓=1的一個焦點為F,過原點O作直線(不經過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.6.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條7.等比數列的各項均為正數,且,則()A.5 B.10C.4 D.8.設函數,若為奇函數,則曲線在點處的切線方程為()A. B.C. D.9.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.10.設aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.若直線l與橢圓交于點A、B,線段的中點為,則直線l的方程為()A. B.C. D.12.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知焦點為F的拋物線的方程為,點Q的坐標為,點P在拋物線上,則點P到y軸的距離與到點Q的距離的和的最小值為______.14.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______15.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標;(2)直線BC的方程;16.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點D到平面ACE的距離為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側,(其中O為坐標原點),求面積的最小值.18.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長19.(12分)已知a>0,b>0,a+b=1,求證:.20.(12分)一臺還可以用的機器由于使用的時間較長,它按不同的轉速生產出來的某機械零件有一些會有缺陷,每小時生產有缺陷零件的多少隨機器運轉的速率而變化,下表為抽樣試驗結果:轉速(轉/秒)1615129每小時生產有缺陷的零件數(件)10985通過觀察散點圖,發現與有線性相關關系:(1)求關于的回歸直線方程;(2)若實際生產中,允許每小時生產的產品中有缺陷的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?(參考:回歸直線方程為,其中,)21.(12分)已知拋物線的頂點是坐標原點,焦點在軸的正半軸上,是拋物線上的點,點到焦點的距離為1,且到軸的距離是(1)求拋物線的標準方程;(2)假設直線通過點,與拋物線相交于,兩點,且,求直線的方程22.(10分)閱讀本題后面有待完善的問題,在下列三個條件:①,②,③中選擇一個作為條件,補充在題中橫線處,使問題完善,并解答你構造的問題.(如果選擇多個關系并分別解答,在不出現邏輯混亂的情況下,按照第一個解答給分).問題:已知命題,,命題___________,若是的充分不必要條件,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用導數的定義可求得的值.【詳解】由導數的定義可得.故選:D.2、A【解析】由題知直線過定點,且在圓內,進而求解最值即可.【詳解】解:將直線化為,所以聯立方程得所以直線過定點將化為標準方程得,即圓心為,半徑為,由于,所以點在圓內,所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A3、C【解析】利用導數的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C4、C【解析】應用分步計數法求后兩位的可能組合數,即可求一次輸入就解開屏保的概率.【詳解】由題設,后兩位可能情況有,∴一次輸入就解開屏保的概率是.故選:C.5、A【解析】分情況討論當直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當直線AB的斜率存在時,可設直線AB的方程y=kx,聯立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F2(5,0),不妨取F(5,0)①當直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A6、D【解析】求得圓心坐標分別為,半徑分別為,根據圓圓的位置關系的判定方法,得出兩圓的位置關系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.7、A【解析】利用等比數列的性質及對數的運算性質求解.【詳解】由題有,則=5.故選:A8、C【解析】利用函數的奇偶性求出,求出函數的導數,根據導數的幾何意義,利用點斜式即可求出結果【詳解】函數的定義域為,若為奇函數,則則,即,所以,所以函數,可得;所以曲線在點處的切線的斜率為,則曲線在點處的切線方程為,即故選:C9、C【解析】求出直線的斜率,結合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設這條件直線的傾斜角為,則,,因此,.故選:C.10、A【解析】運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可解:∵當a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關系11、A【解析】用點差法即可獲解【詳解】設.則兩式相減得即因為,線段AB的中點為,所以所以所以直線的方程為,即故選:A12、D【解析】根據空間向量加法和減法的運算法則,以及向量的數乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用定義將所求距離之和的最小值問題,轉化為的最小值問題.【詳解】焦點F坐標為,拋物線準線為,如圖,作垂直于準線于A,交y軸于B,.故答案為:14、①..②..【解析】以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,根據空間向量的線性運算求得向量的坐標,由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系(如下圖所示)由題意可知,,,因為,,所以,故設平面的法向量為,則,令,得因為,所以直線與平面所成角的正弦值為故答案為:;.15、(1);(2).【解析】(1)設出點C的坐標,進而根據點C在中線上及求得答案;(2)設出點B的坐標,進而求出點M的坐標,然后根據中線的方程及求出點B的坐標,進而求出直線BC的方程.【小問1詳解】設C點的坐標為,則由題知,即.【小問2詳解】設B點的坐標為,則中點M坐標代入中線CM方程則由題知,即,又,則,所以直線BC方程為.16、【解析】建立合適空間直角坐標系,分別表示出點的坐標,然后求解出平面的一個法向量,利用公式求解出點到平面的距離.【詳解】以AB的中點O為坐標原點,分別以OE,OB所在的直線為x軸、y軸,過垂直于平面的方向為軸,建立如下圖所示的空間直角坐標系,則,,設平面ACE的法向量,則,即,令,∴故點D到平面ACE的距離.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設出點M,N的坐標,再結合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側,于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設點,,且,因,則,解得,S,當且僅當,即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數關系求解作答.18、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關點的坐標,證明線面平行只需求出平面的法向量,計算直線對應的向量與法向量的數量積為0,求二面角只需求出兩個半平面對應的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設,為平面BDE的法向量,則,即.不妨設,可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設為平面EMN的法向量,則,因為,,所以.不妨設,可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.19、見解析【解析】將代入式子,得到,,進而進行化簡,最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當且僅當,即時取“=”20、(1);(2)控制在16轉/秒內.【解析】(1)結合已知數據,代入公式中,先求出,然后求出,進而可求出,從而可得回歸方程.(2)由題意得,即可求出轉速的最高速度.【詳解】解:(1)由題意知,,所以,則,即關于的回歸直線方程為.(2)由可得,解得,所以機器的運轉速度應控制在16轉/秒內.21、(1);(2)【解析】(1)根據拋物線的定義,結合到焦點、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設矛盾,設直線方程聯立拋物線方程,應用韋達定理求,,進而求,由題設向量垂直的坐標表示有求直線方程即可.【詳解】(1)由己知,可設拋物線的方程為,又到焦點的距離是1,∴點到準線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設直線的斜率不存在,則直線的方程為,與聯立可得交點、的坐標分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設不成立,∴直線的斜率存在.設直線為,整理得,設,,聯立直線與拋物線的方程得,消去,并整
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備設施的安全評估與造價咨詢協議
- 拍賣物品歸屬未確定協議
- 《Python程序設計基礎》課件 第1、2章 Python 概述;Python 基礎語法
- 舞臺地板施工方案
- 提問我國遠洋重大件貨物標準是重長寬討論冷藏貨物要保證哪兩方
- 中醫中藥課件
- 個人消費貸款合同利率調整協議
- 建設項目合同糾紛處理實務案例
- 【課件】二項式系數的性質+課件高二下學期數學人教A版(2019)選擇性必修第三冊
- 2025年度設備維修保養服務合作協議
- 2025年街道全面加強鄉村治理工作實施方案
- 湖北省武漢市2025屆高中畢業生四月調研考試英語試題(無答案)
- 護理不良事件報告及管理制度
- 小米供應鏈管理案例分析
- 黃岡市2025年春季九年級調研考試道德與法治試卷
- 2025至2030年中國集成電路(IC)制造產業全景調查及投資咨詢報告
- 2025年鄉村全科執業助理醫師考試目的明確試題及答案
- 北京市海淀區2025屆高三一模思想政治試卷(含答案)
- 心腎綜合征診療實踐指南解讀
- 加油站防汛抗洪應急預案范本
- 5.1人民代表大會:我國的國家權力機關課件高中政治統編版必修三政治與法治
評論
0/150
提交評論