河南省鄲城縣第二高級中學2023-2024學年高二數學第一學期期末考試模擬試題含解析_第1頁
河南省鄲城縣第二高級中學2023-2024學年高二數學第一學期期末考試模擬試題含解析_第2頁
河南省鄲城縣第二高級中學2023-2024學年高二數學第一學期期末考試模擬試題含解析_第3頁
河南省鄲城縣第二高級中學2023-2024學年高二數學第一學期期末考試模擬試題含解析_第4頁
河南省鄲城縣第二高級中學2023-2024學年高二數學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省鄲城縣第二高級中學2023-2024學年高二數學第一學期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右頂點分別為,上、下頂點分別為.點為上不在坐標軸上的任意一點,且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.2.已知空間中四點,,,,則點D到平面ABC的距離為()A. B.C. D.03.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.4.若,都是實數,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A B.C. D.6.已知數列為等差數列,則下列數列一定為等比數列的是()A. B.C. D.7.一條光線從點射出,經軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或8.等差數列的通項公式,數列,其前項和為,則等于()A. B.C. D.9.等差數列的前項和,若,則A.8 B.10C.12 D.1410.拋物線C:的焦點為F,P,R為C上位于F右側的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.11.某研究所計劃建設n個實驗室,從第1實驗室到第n實驗室的建設費用依次構成等差數列,已知第7實驗室比第2實驗室的建設費用多15萬元,第3實驗室和第6實驗室的建設費用共為61萬元.現在總共有建設費用438萬元,則該研究所最多可以建設的實驗室個數是()A.10 B.11C.12 D.1312.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數列中,若,,則數列的公比為___________.14.已知點是拋物線上的兩點,,點是拋物線的焦點,若,則的值為__________15.某教師組織本班學生開展課外實地測量活動,如圖是要測山高.現選擇點A和另一座山頂點C作為測量觀測點,從A測得點M的仰角,點C的仰角,測得,,已知另一座山高米,則山高_______米.16.函數y=x3+ax2+bx+a2在x=1處有極值10,則a=________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當時,求直線l被圓C截得的弦長18.(12分)已知橢圓的方程為,雙曲線的左、右焦點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為原點),求的取值范圍19.(12分)如圖,在棱長為2的正方體中,E,F分別為AB,BC上的動點,且.(1)求證:;(2)當時,求點A到平面的距離.20.(12分)設:函數的定義域為;:不等式對任意的恒成立(1)如果是真命題,求實數的取值范圍;(2)如果“”為真命題,“”為假命題,求實數的取值范圍21.(12分)某高中招聘教師,首先要對應聘者的簡歷進行篩選,簡歷達標者進入面試,面試環節應聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應聘者的面試成績X的分布列及數學期望22.(10分)已知函數.(1)當時,求曲線在點處的切線方程;(2)求的單調區間;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設,求得,得到,求得,結合,即可求解.【詳解】由橢圓的方程,可得,設,則,由,因為四條直線的斜率之積大于,即,所以,則離心率,又因為橢圓離心率,所以橢圓的離心率的取值范圍是.故選:A.2、C【解析】根據題意,求得平面的一個法向量,結合距離公式,即可求解.【詳解】由題意,空間中四點,,,,可得,設平面的法向量為,則,令,可得,所以,所以點D到平面ABC的距離為.故選:C.3、D【解析】根據漸近線方程求得關系,結合離心率的計算公式,即可求得結果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.4、A【解析】根據充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.5、A【解析】把求面積轉化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A6、A【解析】根據等比數列的定義判斷【詳解】設的公差是,即,顯然,且是常數,是等比數列,若中一個為1,則,則不是等比數列,只要,,都不可能是等比數列,如,,故選:A7、C【解析】點關于軸的對稱點為,由反射光線的性質,可設反射光線所在直線的方程為:,再利用直線與圓相切,可知圓心到直線的距離等于半徑,由此即可求出結果【詳解】點關于軸的對稱點為,設反射光線所在直線的方程為:,化為因為反射光線與圓相切,所以圓心到直線的距離,可得,所以或故選:C8、D【解析】根據裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D9、C【解析】假設公差為,依題意可得.所以.故選C.考點:等差數列的性質.10、A【解析】不妨設,不妨設,則,利用拋物線的對稱性及正方形的性質列出的方程求得后可得結論【詳解】如圖所示,設,不妨設,則,由拋物線的對稱性及正方形的性質可得,解得(正數舍去),所以故選:A11、C【解析】根據等差數列通項公式,列出方程組,求出的值,進而求出令根據題意令,即可求解.【詳解】設第n實驗室的建設費用為萬元,其中,則為等差數列,設公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設12個實驗室.故選:C.12、A【解析】分析:先求出A,B兩點坐標得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】求出等比數列的公比,利用定義可求得數列的公比.【詳解】設等比數列的公比為,則,因此,數列的公比為.故答案為:.14、10【解析】由拋物線的定義根據題意可知求得p,代入拋物線方程,分別求得y1,y2的值,即可求得y12+y2的值【詳解】由拋物線的定義可得,依據題設可得,則(舍去負值),故,故填.【點睛】本題考查拋物線的定義和性質,利用已知相等關系求解拋物線方程,然后求解已知點的縱坐標,解題中需要熟練拋物的定義和性質,靈活應用.15、【解析】利用正弦定理可求出各個三角形的邊長,進而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.16、4【解析】∵y′=3x2+2ax+b,∴或當a=-3,b=3時,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由直線過定點,只需判斷定點在圓內部,即可證結論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設,,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為18、(1);(2)【解析】(1)求出橢圓的焦點和頂點,即得雙曲線的頂點和焦點,從而易求得標準方程;(2)將代入,得由直線與雙曲線交于不同的兩點,得的取值范圍,設,由韋達定理得則代入可求得的范圍【詳解】(1)設雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點,得①設則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點睛】本題考查雙曲線的標準方程,考查直線與雙曲線相交中的范圍問題.應注意:(1)利用圓錐曲線的幾何性質或判別式構造不等關系,從而確定參數的取值范圍(2)利用已知參數的范圍,求新參數的范圍,解這類問題的核心是建立兩個參數之間的等量關系(3)利用隱含的不等關系建立不等式,從而求出參數的取值范圍(4)利用已知的不等關系構造不等式,從而求出參數的取值范圍(5)利用求函數的值域的方法將待求量表示為其他變量的函數,求其值域,從而確定參數的取值范圍19、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數量積求出平面的法向量,結合求點到面距離的向量法即可得出結果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標系,則,,,,所以,,所以,故,所以;【小問2詳解】當時,,,,,則,,,設是平面的法向量,則由,解得,取,得,設點A到平面的距離為,則,所以點A到平面的距離為.20、(1)(2)【解析】(1)由對數函數性質,轉化為對任意的恒成立,結合二次函數的性質,即可求解;(2)利用基本不等式,求得當命題是真命題,得到,結合“”為真命題,“”為假命題,分類討論,即可求解.【小問1詳解】解:因為是真命題,所以對任意的恒成立,當時,不等式,顯然在不能恒成立;當時,則滿足解得,故實數的取值范圍為【小問2詳解】解:因為,所以,當且僅當時,等號成立若是真命題,則;因為“”為真命題,“”為假命題,所以與一真一假當真假時,所以;當假真時,所以,綜上,實數的取值范圍為21、(1)(2)分布列見解析;期望為【解析】(1)根據古典概型的概率公式即可求出;(2)根據題意可知,隨機變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨立事件的概率乘法公式分別求出對應的概率,列出分布列即可求出數學期望【小問1詳解】從這5人中隨機抽取3人,恰有2人簡歷達標的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以22、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導后,令求得兩根,分別在、和三種情況下根據導函數的正負得到函數的單調區間.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論