




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省安順市2023年高二上數學期末調研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.2.直線與圓的位置關系是()A.相交 B.相切C.相離 D.不確定3.已知橢圓的離心率,為橢圓上的一個動點,若定點,則的最大值為A. B.C. D.4.拋物線的焦點到其準線的距離是()A.4 B.3C.2 D.15.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數表選取3個個體,選取方法是從隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.146.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現在距今五千年前長江下游地區的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.7.已知直線與直線垂直,則()A. B.C. D.38.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x9.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.10.若變量x,y滿足約束條件,則目標函數最大值為()A.1 B.-5C.-2 D.-711.已知是邊長為6的等邊所在平面外一點,,當三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.12.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數是__________14.已知橢圓的短軸長為2,上頂點為,左頂點為,左、右焦點分別是,,且的面積為,點為橢圓上的任意一點,則的取值范圍是______.15.已知函數,若,則________.16.若正四棱柱的底面邊長為5,側棱長為4,則此正四棱柱的體積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新冠疫情下,有一學校推出了食堂監管力度的評價與食品質量的評價系統,每項評價只有合格和不合格兩個選項,師生可以隨時進行評價,某工作人員利用隨機抽樣的方法抽取了200位師生的信息,發現對監管力度滿意的占75%,對食品質量滿意的占60%,其中對監管力度和食品質量都滿意的有80人.(1)完成列聯表,試問:是否有99%的把握判斷監管力度與食品質量有關聯?監督力度情況食品質量情況對監督力度滿意對監督力度不滿意總計對食品質量滿意80對食品質量不滿意總計200(2)為了改進工作作風,針對抽取的200位師生,對監管力度不滿意的人抽取3位征求意見,用X表示3人中對監管力度與食品質量都不滿意的人數,求X的分布列與均值.參考公式:,其中.參考數據:①當時,有90%的把握判斷變量A、B有關聯;②當時,有95%的把握判斷變量A、B有關聯;③當時,有99%的把握判斷變量A、B有關聯.18.(12分)計算:(1)求函數(a,b為正常數)的導數(2)已知點P在曲線上,為曲線在點P處的切線的傾斜角,則的取值范圍19.(12分)已知數列是公差為2的等差數列,且滿足,,成等比數列(1)求數列的通項公式;(2)求數列的前n項和20.(12分)設圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點21.(12分)如圖,在正方體中,分別為,的中點(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標準方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當時,,命題為真,根據復合命題的真假關系,即可得出結論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復合命題真假的判斷,屬于基礎題.2、A【解析】首先求出直線過定點,再判斷點在圓內,即可判斷;【詳解】解:直線恒過定點,又,即點在圓內部,所以直線與圓相交;故選:A3、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據此可得:,橢圓方程為,設橢圓上點的坐標為,則,故:,當時,.本題選擇C選項.【點睛】本題主要考查橢圓方程問題,橢圓中的最值問題等知識,意在考查學生的轉化能力和計算求解能力.4、C【解析】由拋物線焦點到準線的距離為求解即可.【詳解】因為拋物線焦點到準線的距離為,故拋物線的焦點到其準線的距離是2.故選:C【點睛】本題主要考查了拋物線的標準方程中的幾何意義,屬于基礎題型.5、D【解析】由隨機數表法抽樣原理即可求出答案.【詳解】根據題意,依次讀出的數據為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.6、B【解析】本題首先可根據題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據古典概型的概率計算公式即可得出結果.【詳解】點從點出發,每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.7、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.8、D【解析】根據雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.9、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質可得當時,弦長最小,當過點時,弦長最長,再根據向量數量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D10、A【解析】作出不等式組對應的平面區域,利用目標函數的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數,得,故選:A11、C【解析】由題意分析可得,當時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.12、B【解析】由漸近線方程得到,焦點坐標為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B二、填空題:本題共4小題,每小題5分,共20分。13、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數.【詳解】由題意抽樣比例:則從高三年級抽取的人數是人故答案為:2514、【解析】根據的面積和短軸長得出a,b,c的值,從而得出的范圍,得到關于的函數,從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點睛】本題考查了橢圓的簡單性質,函數最值的計算,熟練掌握橢圓的基本性質是解題的關鍵,屬于中檔題15、【解析】求出導函數,確定導函數奇函數,然后可求值【詳解】由已知,它是奇函數,∴故答案為:【點睛】本題考查導數的運算,考查函數的奇偶性,確定函數的奇偶性是解題關鍵16、100【解析】根據棱柱體積公式直接可得.【詳解】故答案為:100三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯表見解析,有99%的把握判斷監管力度與食品質量有關聯;(2)X的分布列見解析,X的期望為【解析】(1)根據給定條件完善列聯表,再計算的觀測值并結合給定數據即可作答.(2)求出X的可能值及各個值對應的概率列出X的分布列,再計算期望作答.【小問1詳解】對監管力度滿意的有,對食品質量滿意的有,列聯表如下:對監督力度滿意對監督力度不滿意總計對食品質量滿意8040120對食品質量不滿意701080總計15050200則的觀測值為:,所以有99%的把握判斷監管力度與食品質量有關聯.【小問2詳解】由(1)及已知得,X的所有可能值為:0,1,2,3,,,,,X的分布列為:X0123PX的期望為:.【點睛】易錯點睛:獨立性檢驗得出的結論是帶有概率性質的,不可對某個問題下確定性結論,否則就可能對統計計算的結果作出錯誤的解釋18、(1)(2)【解析】(1)根據導數的運算法則,結合復合函數的求導法則,可得答案;(2)求出函數的導數,結合基本不等式求得導數的取值范圍,根據導數的幾何意義結合正切函數的單調性,求得答案.【小問1詳解】由題意得:;【小問2詳解】,由于,故,當且僅當時取等號,故,則P處的切線的斜率,由為曲線在點P處的切線的傾斜角可得,由于,故的取值范圍為:.19、(1)(2)【解析】(1)由成等比數列得首項,從而得到通項公式;(2)利用裂項相消求和可得答案.【小問1詳解】設數列的公差為,∵成等比數列,∴,即,∴,由題意故,得,即.【小問2詳解】,∴20、(1)與半徑相等,(2)證明見解析【解析】(1)依據橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設而不求法把條件轉化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設直線方程為:,與橢圓方程聯立:,得,設,,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數形結合是數學解題中常用的思想方法,數形結合的思想可以使某些抽象的數學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數學問題的本質;另外,由于使用了數形結合的方法,很多問題便迎刃而解,且解法簡捷。21、(1)證明見解析;(2).【解析】(1)由正方體性質易得,根據線面平行的判定可得面、面,再由面面平行的判定證明結論;(2)建立空間直角坐標系,設正方體棱長為2,確定相關點的坐標,進而求兩個半平面的法向量,應用空間向量夾角的坐標表示求二面角的余弦值【小問1詳解】在正方體中,且,且,且,則四邊形為平行四邊形,即有,因為面,面,則平面,同理平面,又,面,則平面平面E.小問2詳解】以點為坐標原點,,,所在直線分別為、、軸建立如圖所示的空間直角坐標系,設正方體的棱長為,則,,所以,,設平面的法向量為,則,令,則由平面,則是平面的一個法向量設平面與平面夾角,,因此平面與平面所成銳二面角的余弦值為22、(1)(2)證明見解析【解析】(1)根據周長為8,求得a,再根據離心率求解;(2)方法一:設,,得到直線和直線的方程,聯立求得Q的橫坐標,根據在橢圓上,得到,然后代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 30237-2025古代壁畫病害與圖示
- 輸卵管癌護理查房
- 江蘇省南京市六區2024-2025學年初三4月模擬考試物理試題試卷含解析
- 廈門大學嘉庚學院《日語語法》2023-2024學年第二學期期末試卷
- 遼寧省阜新市名校2025屆初三第三次診斷性考試數學試題試卷含解析
- 肇慶市重點中學2025屆高三第一次五校聯考自選模塊試題含解析
- 四川鐵道職業學院《雕塑》2023-2024學年第二學期期末試卷
- 四川省眉山市龍正區重點達標名校2024-2025學年中考模擬試卷(英語試題理)試卷含答案
- 江西省育華學校2024-2025學年初三第四次統考英語試題試卷含答案
- 四川省廣元市劍閣縣市級名校2025年下學期初三物理試題5月質檢考試試卷含解析
- 平面磨床控制線路
- 小學生天文知識競賽復習題庫及答案
- 土方填筑碾壓試驗方案(完整版)
- 往日時光(原版)鋼琴雙手簡譜_鋼琴譜_鋼琴簡譜
- 工地運輸車輛的危險源辨識與風險防控
- RCS-985說明書V300
- 2014—2015—2《刑法總論》教學大綱(修正版)
- 《美在身邊》PPT課件.ppt
- 2016年最新《援外出國人員生活待遇管理辦》法
- 工程控制網測量記錄
- VOC在線運維技術服務合同協議書
評論
0/150
提交評論