




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省肇慶市實驗中學(xué)、廣東省高要市新橋中學(xué)兩校2023-2024學(xué)年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列結(jié)論正確的是().A.函數(shù)在上是增函數(shù)B.C.D.是函數(shù)的極小值點3.已知,,2成等差數(shù)列,則在平面直角坐標(biāo)系中,點M(x,y)的軌跡為()A. B.C. D.4.已知向量,,且,則實數(shù)等于()A1 B.2C. D.5.已知數(shù)列滿足,則()A. B.C. D.6.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真7.某人忘了電腦屏保密碼的后兩位,但記得最后一位是1,3,5,7,9中的一個數(shù)字,倒數(shù)第二位是G,O,D中的一個字母,若他嘗試輸入密碼,則一次輸入就解開屏保的概率是()A. B.C. D.8.拋物線的焦點到準(zhǔn)線的距離()A.4 B.C.2 D.9.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.1510.等比數(shù)列中,,則()A. B.C.2 D.411.已知命題p:,,則命題p的否定為()A., B.,C., D.,12.不等式解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是__________14.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請寫出一個符合條件的數(shù)列的通項公式__________.15.已知正方體的棱長為6,E為棱的中點,F(xiàn)為棱上的點,且,則___________.16.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開始上漲了1米,則此時橋洞中水面的寬度為______米三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,過焦點的直線l交拋物線C于M、N兩點,且線段中點的縱坐標(biāo)為2(1)求直線l的方程;(2)設(shè)x軸上關(guān)于y軸對稱的兩點P、Q,(其中P在Q的右側(cè)),過P的任意一條直線交拋物線C于A、B兩點,求證:始終被x軸平分18.(12分)已知數(shù)列的前項和,數(shù)列是各項均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.20.(12分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.21.(12分)設(shè)命題方程表示中心在原點,焦點在坐標(biāo)軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.22.(10分)在平面直角坐標(biāo)系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當(dāng)l與拋物線的對稱軸垂直時,(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時,圓的圓心坐標(biāo)為,半徑為2,此時圓與軸相切;當(dāng)圓與軸相切時,因為圓的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A2、B【解析】根據(jù)導(dǎo)函數(shù)的圖像,可求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值點的定義逐一判斷各個選項即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象,可得或時,,當(dāng)或時,,所以函數(shù)在和上遞減,在和上遞增,故A錯誤;,故B正確;,故C錯誤;是函數(shù)的極大值點,故D錯誤.故選:B.3、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運算以及化簡公式的應(yīng)用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設(shè)誰,再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡即可.4、C【解析】利用空間向量垂直的坐標(biāo)表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C5、D【解析】根據(jù)給定條件求出數(shù)列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D6、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.7、C【解析】應(yīng)用分步計數(shù)法求后兩位的可能組合數(shù),即可求一次輸入就解開屏保的概率.【詳解】由題設(shè),后兩位可能情況有,∴一次輸入就解開屏保的概率是.故選:C.8、A【解析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點到準(zhǔn)線的距離.【詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點到準(zhǔn)線的距離為4.故選:A.9、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C10、D【解析】利用等比數(shù)列的下標(biāo)特點,即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D11、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.12、C【解析】化簡一元二次不等式的標(biāo)準(zhǔn)形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:應(yīng)用換元法,令,,不等式恒成立,轉(zhuǎn)化為在恒成立,確定關(guān)系式,即可求得答案.詳解:函數(shù)對稱軸,最小值令,則恒成立,即在上.,在單調(diào)遞增,,解得,即實數(shù)的取值范圍是故答案為.點睛:本題考查了函數(shù)的單調(diào)性、最值問題、不等式恒成立問題以及二次函數(shù)的圖象和性質(zhì)等知識,考查了復(fù)合函數(shù)問題求解的換元法14、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫出一個符合題意的數(shù)列的通項公式即可.【詳解】因為數(shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項均為負數(shù),符合題意的一個數(shù)列的通項公式為.故答案為:(答案不唯一)15、18【解析】建立空間直角坐標(biāo)系,利用空間向量的數(shù)量積運算求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,所以,故答案為:1816、【解析】以橋的頂點為坐標(biāo)原點,水平方向所在直線為x軸建立直角坐標(biāo)系,則根據(jù)點在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點坐標(biāo)為,求出,進而可得水面的寬度.【詳解】以橋的頂點為坐標(biāo)原點,水平方向所在直線為x軸建立直角坐標(biāo)系,則拋物線的方程為,因為點在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點坐標(biāo)為,則,得,所以此時橋洞中水面的寬度為米故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)設(shè)直線l的方程為:,聯(lián)立方程,利用韋達定理可得結(jié)果;(2)設(shè),借助韋達定理表示,即可得到結(jié)果.【詳解】(1)由已知可設(shè)直線l的方程為:,聯(lián)立方程組可得,設(shè),則又因為,得,故直線l的方程為:即為;(2)由題意可設(shè),可設(shè)過P的直線為聯(lián)立方程組可得,顯然設(shè),則所以所以始終被x軸平分18、(1),;(2).【解析】(1)利用求出數(shù)列的通項,再求出等比數(shù)列的公比即得解;(2)求出,再利用錯位相減法求解.【小問1詳解】解:,.當(dāng)時,,適合..設(shè)等比數(shù)列公比為,,,即,或(舍去),.【小問2詳解】解:,,,上述兩式相減,得,所以所以.19、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標(biāo)系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為20、(1)(2)【解析】小問1:由拋物線的定義可求得動點的軌跡方程;小問2:可知直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問1詳解】由題意點的軌跡是以為焦點,直線為準(zhǔn)線的拋物線,所以,則,所以動點的軌跡方程是.【小問2詳解】由已知直線的方程是,設(shè)、,由得,,所以,則,故,21、【解析】求出當(dāng)命題、分別為真命題時實數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應(yīng)的實數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數(shù)的范圍為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《高血壓病發(fā)病機制與治療策略》課件
- 《服務(wù)器機箱設(shè)計》課件
- 鐵路市場營銷市場營銷的解讀課件
- 水泥混凝土路面常見病害的維修路基路面養(yǎng)護江西交通胡鳳輝
- 水平角測量方向法課件
- 中醫(yī)課件教學(xué)課件
- 中亞飲食文化課件
- 版?zhèn)€人反擔(dān)保保證函合同樣本
- 2025版二手設(shè)備銷售合同模板
- 南昌影視傳播職業(yè)學(xué)院《圖形創(chuàng)意A》2023-2024學(xué)年第二學(xué)期期末試卷
- LOGO更換普通夾板作業(yè)課件
- 2025年415全民國家安全教育日主題班會課件
- 美容師考試與法律法規(guī)相關(guān)知識及試題答案
- 山東省東營市東營區(qū)勝利第一初級中學(xué)2024-2025學(xué)年九年級下學(xué)期一模英語試卷(含答案無聽力原文及音頻)
- 臨床決策支持系統(tǒng)在路徑優(yōu)化中的實踐案例
- 推動研究生教育高質(zhì)量發(fā)展方案
- 漢服實體店創(chuàng)業(yè)計劃書
- 2025-2030中國滑雪板行業(yè)深度調(diào)研及投資前景預(yù)測研究報告
- 2025-2031年中國竹鼠養(yǎng)殖及深加工行業(yè)投資研究分析及發(fā)展前景預(yù)測報告
- 2025年高考數(shù)學(xué)模擬卷2(新高考Ⅱ卷專用)(解析版)
- CNAS-CC160大型活動可持續(xù)性管理體系審核及認證的能力要求
評論
0/150
提交評論