




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省龍巖市連城縣第一中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.散點圖上有5組數(shù)據(jù):據(jù)收集到的數(shù)據(jù)可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.22.已知直線與平行,則的值為()A. B.C. D.3.設,則曲線在點處的切線的傾斜角是()A. B.C. D.4.展開式的第項為()A. B.C. D.5.設,向量,,,且,,則()A. B.C.3 D.46.直線的傾斜角為()A.30° B.60°C.90° D.120°7.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.28.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.橢圓的長軸長是()A.3 B.4C.6 D.810.已知正實數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.11.數(shù)學美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.12.已知離散型隨機變量X的分布列如下:X123P則數(shù)學期望()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.在中,若面積,則______14.設x,y滿足約束條件則的最大值為________15.設拋物線的焦點為,直線過焦點,且與拋物線交于兩點,,則__________16.直線與直線垂直,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)記函數(shù),當時,討論函數(shù)的單調(diào)性;(2)設,若存在兩個不同的零點,證明:為自然對數(shù)的底數(shù)).18.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點,(1)證明:;(2)設平面平面,求l與平面MND所成角的正弦值19.(12分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設的前項和為,令,求證:.20.(12分)2017年5月27日當今世界圍棋排名第一的柯潔在與的人機大戰(zhàn)中中盤棄子認輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負,這次人機大戰(zhàn)再次引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認為“圍棋迷”與性別有關(guān)?非圍棋迷圍棋迷合計男女1055合計(2)為了進一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學生組隊參加校際交流賽,首輪該校需派兩名學生出賽,若從5名學生中隨機抽取2人出賽,求2人恰好一男一女的概率.參考數(shù)據(jù):0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求證:AB⊥PC;(2)點M在線段PD上,二面角M﹣AC﹣D的余弦值為,求三棱錐M﹣ACP體積22.(10分)如圖,矩形和菱形所在的平面相互垂直,,為的中點.(1)求證:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】通過樣本中心點來求得正確答案.【詳解】,故,則,故.故選:C2、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.3、C【解析】根據(jù)導數(shù)的概念可得,再利用導數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C4、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B5、C【解析】根據(jù)空間向量垂直與平行的坐標表示,求得的值,得到向量,進而求得,得到答案.【詳解】由題意,向量,,,因為,可得,解得,即,又因為,可得,解得,即,可得,所以.故選:C.6、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B7、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎題.8、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據(jù)此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.9、D【解析】根據(jù)橢圓方程可得到a,從而求得長軸長.【詳解】橢圓方程為,故,所以橢圓長軸長為,故選:D.10、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當且僅當時取等號,∴的最小值為.故選:A11、C【解析】結(jié)合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內(nèi)的圖像上,因為曲線的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.12、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】結(jié)合三角形面積公式與余弦定理得,進而得答案.【詳解】解:由三角形的面積公式得,所以,因為,所以,即,因為,所以故答案為:14、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標代入目標函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:115、【解析】拋物線焦點為,由于直線和拋物線有兩個交點,故直線斜率存在.根據(jù)拋物線的定義可知,故的縱坐標為,橫坐標為.不妨設,故直線的方程為,聯(lián)立直線方程和拋物線方程,化簡得,解得,故.所以.【點睛】本小題主要考查直線和拋物線的位置關(guān)系,考查拋物線的幾何性質(zhì)和定義.考查三角形面積公式.在解題過程中,先根據(jù)題目所給拋物線的方程求得焦點的坐標,然后利用拋物線的定義:到定點的距離等于到定直線的距離,由此求得點的坐標,進而求得直線的方程,聯(lián)立直線方程和拋物線方程求得點的坐標.最后求得面積比.16、##【解析】根據(jù)兩直線垂直得,即可求出答案.【詳解】由直線與直線垂直得,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導,然后對導數(shù)化簡整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個不同的零點,將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因為,所以,令,得或.所以時,或;時,.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因為,所以.當時,,可得在上單調(diào)遞減,此時不可能存在兩個不同的零點,不符合題意.當時,.令,得.當時,;當時,.所以在上單調(diào)遞增,在上單調(diào)遞減.而當時,,時,.所以要使存在兩個不同的零點,則,即,解得.因為存在兩個不同的零點,則,即.不妨設,則,則,要證,即證,即證,即,.即證,令,則,所以在上單調(diào)遞增,所以,即,所以成立.綜上有.【關(guān)鍵點點睛】解決本題的第(1)問的關(guān)鍵是對導函數(shù)的分子因式分解;解決第(2)問的關(guān)鍵一是分步證明,二是研究函數(shù)的單調(diào)性,三是轉(zhuǎn)化思想的運用,四是換元思想的運用.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵PD⊥平面ABCD,,以點D為坐標原點,DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設平面MND的一個法向量,則,取,則,于是是平面MND的一個法向量,因為,設l與平面MND所成角為,則19、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關(guān)系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當n≥2時,=當n=1時,也符合上式,∴;當時,,當n=1時,也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設為數(shù)列的前n項和,則.20、(1)沒有95%把握認為“圍棋迷”與性別有關(guān).(2).【解析】(1)由頻率分布直方圖求得頻率與頻數(shù),填寫列聯(lián)表,計算觀測值,對照臨界值得出結(jié)論;(2)根據(jù)分層抽樣原理,用列舉法求出基本事件數(shù),計算所求的概率值【詳解】(1)由頻率分布直方圖可知,所以在抽取的100人中,“圍棋迷”有25人,從而列聯(lián)表如下非圍棋迷圍棋迷合計男301545女451055合計7525100因為,所以沒有95%的把握認為“圍棋迷”與性別有關(guān).(2)由(1)中列聯(lián)表可知25名“圍棋迷”中有男生15名,女生10名,所以從“圍棋迷”中按性別分層抽樣抽取的5名學生中,有男生3名,記為,有女生2名,記為.則從5名學生中隨機抽取2人出賽,基本事件有:,,,,,,,,,,共10種;其中2人恰好一男一女的有:,,,,,,共6種;故2人恰好一男一女的概率為.【點睛】本題考查了頻率分布直方圖、獨立性檢驗和列舉法求概率的應用問題,是基礎題21、(1)證明見解析(2)【解析】(1)將問題轉(zhuǎn)化為證明AB⊥平面PAC,然后結(jié)合已知可證;(2)建立空間直角坐標系,用向量法結(jié)合已知先確定點M位置,然后轉(zhuǎn)化法求體積可得.【小問1詳解】由題意得四邊形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小問2詳解】過點A作AE⊥BC于E,易知E為BC中點,以A為原點,AE,AD,AP所在直線為x軸,y軸,z軸建立空間直角坐標系,則,,,.則設,.顯然,是平面ACD的一個法向量,設平面MAC的一個法向量為.則有,取,解得由二面角M﹣AC﹣D的余弦值為,有,解得,所以M為PD中點.所以22、(1)證明見解析;(2).【解析】(1)利用面面垂直和線面垂直的性質(zhì)定理可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拖輪應急協(xié)議合同
- 展期協(xié)議是主合同的補充
- 員工簽勞動合同協(xié)議書
- 招生協(xié)議合同
- 業(yè)務轉(zhuǎn)讓合同協(xié)議
- 酒店鮮花協(xié)議合同
- 個人股份投資合同協(xié)議書
- 買房過戶協(xié)議合同范本
- 商品寄賣協(xié)議合同
- 智能辦公室裝修協(xié)議合同
- 形勢與政策(吉林大學)知到智慧樹章節(jié)測試課后答案2024年秋吉林大學
- 介紹家鄉(xiāng)山西太原
- 計算機基礎習題庫(含答案)
- 《臨床科研思維》課件
- 食品營養(yǎng)與健康職業(yè)規(guī)劃
- 字母認主協(xié)議書(2篇)
- 醫(yī)院保潔員培訓內(nèi)容
- 學校產(chǎn)教融合實訓基地項目可行性研究報告
- 每日消防巡查記錄表
- 醫(yī)院駕駛員培訓
- 《汽車常見維護與修理項目實訓教程》-教案
評論
0/150
提交評論