福建省福州市倉山區師范大學附中2023-2024學年高二數學第一學期期末檢測模擬試題含解析_第1頁
福建省福州市倉山區師范大學附中2023-2024學年高二數學第一學期期末檢測模擬試題含解析_第2頁
福建省福州市倉山區師范大學附中2023-2024學年高二數學第一學期期末檢測模擬試題含解析_第3頁
福建省福州市倉山區師范大學附中2023-2024學年高二數學第一學期期末檢測模擬試題含解析_第4頁
福建省福州市倉山區師范大學附中2023-2024學年高二數學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省福州市倉山區師范大學附中2023-2024學年高二數學第一學期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若向量,,,則()A. B.C. D.2.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定3.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.4.已知拋物線的準線方程為,則此拋物線的標準方程為()A. B.C. D.5.已知圓的方程為,則圓心的坐標為()A. B.C. D.6.已知曲線C的方程為,則下列結論正確的是()A.當時,曲線C為圓B.“”是“曲線C為焦點在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點在x軸上的橢圓”的必要而不充分條件D.存在實數k使得曲線C為雙曲線,其離心率為7.已知命題,,則A., B.,C., D.,8.直線y=x+1與圓x2+y2=1的位置關系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離9.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.11.已知拋物線的焦點為F,點A在拋物線上,直線FA與拋物線的準線交于點M,O為坐標原點.若,且,則()A.1 B.2C.3 D.412.設實數x,y滿足約束條件則的最小值()A.5 B.C. D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線平行,則實數m的值為______14.已知圓柱軸截面是邊長為4的正方形,則圓柱的側面積為______________

.15.若函數在區間上單調遞減,則實數的取值范圍是____________.16.已知雙曲線與橢圓有公共的左、右焦點分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內分別交于M,N兩點,且線段的中點在另一條漸近線上,則的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2021年國慶期間,某電器商場為了促銷,給出了兩種優惠方案,顧客只能選擇其中的一種,方案一:每消費滿8千元,可減8百元.方案二:消費金額超過8千元(含8千元),可抽取小球三次,其規則是依次從裝有2個紅色小球、2個黃色小球的一號箱子,裝有2個紅色小球、2個黃色小球的二號箱子,裝有1個紅色小球、3個黃色小球的三號箱子各抽一個小球(這些小球除顏色外完全相同),其優惠情況為:若抽出3個紅色小球則打6折;若抽出2個紅色小球則打7折;若抽出1個紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優惠的概率;(2)若你朋友在該商場消費了1萬元,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.18.(12分)如圖甲是由正方形,等邊和等邊組成的一個平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點,且三棱錐和的體積比為,求直線與平面所成角的正弦值.19.(12分)已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值時兩圓外切?(2)m取何值時兩圓內切?(3)當m=45時,求兩圓公共弦所在直線的方程和公共弦的長20.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.21.(12分)已知等比數列的首項,公比,在中每相鄰兩項之間都插入3個正數,使它們和原數列的數一起構成一個新的等比數列.(1)求數列的通項公式;(2)記數列前n項的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.22.(10分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A2、C【解析】令雙曲線右焦點為,由對稱性可知,,結合雙曲線的定義即可得出結果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數,故選:C.3、C【解析】作垂直準線于,垂直準線于,作于,結合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準線于,垂直準線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.4、D【解析】由已知設拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因為拋物線的準線方程為,所以設拋物線方程為,則,得,所以拋物線方程為,故選:D,5、A【解析】將圓的方程配成標準方程,可求得圓心坐標.【詳解】圓的標準方程為,圓心的坐標為.故選:A.6、C【解析】根據橢圓、雙曲線的定義及簡單幾何性質計算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當時,曲線C的方程為,此時曲線C表示橢圓,所以A錯誤;對于B中,當曲線C的方程為表示焦點在x軸上的雙曲線時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當曲線C的方程為表示焦點在x軸上的橢圓時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當曲線C的方程為表示雙曲線,且離心率為時,此時雙曲線的實半軸長等于虛半軸長,此時,解得,此時方程表示圓,所以不正確.故選:C.7、A【解析】根據全稱命題與特稱命題互為否定的關系,即可求解,得到答案【詳解】由題意,根據全稱命題與特稱命題的關系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題8、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關系,同時判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關系是相交但直線不過圓心故選B考點:直線與圓的位置關系9、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計算說明“若q則p”的真假即可判斷作答.【詳解】因為,由得:,則,當且僅當,即時取等號,因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A10、D【解析】由題設易知四邊形為矩形,可得,結合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質可得,由已知條件得到,進而得到橢圓參數的齊次式求離心率范圍.11、D【解析】設,由和在拋物線上,求出和,利用求出p.【詳解】過A作AP垂直x軸與P.拋物線的焦點為,準線方程為.設,因為,所以,解得:.因為在拋物線上,則.所以,即,解得:.故選:D12、B【解析】做出,滿足約束條件的可行域,結合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經過點時有最小值,由得,所以的最小值為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由兩直線平行的判定可得求解即可,注意驗證是否出現直線重合的情況.【詳解】由題設,,解得,經檢驗滿足題設.故答案為:14、【解析】由圓柱軸截面的性質知:圓柱體的高為,底面半徑為,根據圓柱體的側面積公式,即可求其側面積.【詳解】由圓柱的軸截面是邊長為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側面積為.故答案為:.15、【解析】求解定義域,由導函數小于0得到遞減區間,進而得到不等式組,求出實數的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區間,上單調遞減,∴,解得:.故答案為:16、【解析】求出橢圓焦點坐標,即雙曲線焦點坐標,即雙曲線的半焦距,再求出點坐標,利用中點在漸近線上得出的關系式,從而求得,然后可計算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點坐標),,雙曲線的不在第一象限的漸近線方程為,,的中點坐標為,它在漸近線上,所以,化簡得,又,所以,雙曲線方程為,則得,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優惠,則需要抽出至少一個紅球,求出沒有抽出紅色小球的概率,再根據對立事件的概率公式即可得出答案;(2)若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,求出對應概率,從而可求得的期望,在比較的期望與9200的大小即可得出結論.【小問1詳解】解:根據題意得要使方案二比方案一優惠,則需要抽出至少一個紅球,設沒有抽出紅色小球為事件,則,所以所求概率;【小問2詳解】解:若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,,,,,故的分布列為X60007000800010000P所以(元),因為,所以選擇方案二更劃算.18、(1)證明見解析;(2).【解析】(1)取的中點為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標系,寫出對應點的坐標和向量的坐標,再計算平面法向量,利用所求角的正弦為即得結果.【詳解】(1)證明:如圖,取的中點為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標系,根據邊長關系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設平面的法向量為,則,令,得.設直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【點睛】方法點睛:求空間中直線與平面所成角的常見方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂線,通過等體積法間接求點到面的距離,距離與斜線長的比值即線面成角的正弦值;(3)向量法:利用平面法向量與斜線方向向量所成的余弦值的絕對值,即是線面成角的正弦值.19、(1)(2)(3)直線方程為4x+3y-23=0,弦長為【解析】(1)先把兩個圓的方程化為標準形式,求出圓心和半徑,再根據兩圓的圓心距等于兩圓的半徑之和,求得m的值;(2)由兩圓的圓心距等于兩圓的半徑之差為,求得m的值.(3)當m=45時,把兩個圓的方程相減,可得公共弦所在的直線方程.求出第一個圓的圓心(1,3)到公共弦所在的直線的距離d,再利用弦長公式求得弦長試題解析:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d==5,兩圓的半徑之和為+,由兩圓的半徑之和為+=5,可得m=(2)由兩圓的圓心距d=="5"等于兩圓的半徑之差為|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)當m=45時,兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0第一個圓的圓心(1,3)到公共弦所在的直線的距離為d==2,可得弦長為考點:1.兩圓相切的位置關系;2.兩圓相交的公共弦問題20、(1);(2)或.【解析】(1)由題設可得圓心為,半徑,根據直線與圓的相切關系,結合點線距離公式列方程求參數a的值即可.(2)根據圓中弦長、半徑與弦心距的幾何關系列方程求參數a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因為,即,解得:,所以,整理得:,解得:或,則直線為或.21、(1)(2)當或時,有最大值.【解析】(1)利用等比數列通項公式求解即可;(2)求出數列的前n項的乘積為,利用二次函數的性質求最值即可.【小問1詳解】由已知得,數列首項,,設數列的公比為,即∴即,【小問2詳解】,即當或5時,有最大值.22、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據面面垂直的性質和線面垂直的性質得出線線垂直的結論,注意在書寫的時候

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論