




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆吉林省普通高中高二上數學期末學業質量監測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.2.在等差數列中,,且,,,構成等比數列,則公差()A.0或2 B.2C.0 D.0或3.已知函數(其中)的部分圖像如圖所示,則函數的解析式為()A. B.C. D.4.命題,,則是()A., B.,C., D.,5.如圖所示,正方體的棱長為2,以其所有面的中心為頂點的多面體的表面積為()A. B.C.8 D.126.下列四個命題中為真命題的是()A.設p:1<x<2,q:2x>1,則p是q的必要不充分條件B.命題“”的否定是“”C.函數的最小值是4D.與的圖象關于直線y=x對稱7.某學生2021年共參加10次數學競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數字特征最為合適()A.,,,…,的平均值; B.,,,…,的標準差;C.,,,…,的中位數; D.,,,…,的眾數;8.觀察:則第行的值為()A. B.C. D.9.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.610.在直三棱柱中,底面是等腰直角三角形,,則與平面所成角的正弦值為()A. B.C. D.11.按照小李的閱讀速度,他看完《三國演義》需要40個小時.2021年12月20日,他開始閱讀《三國演義》,當天他讀了20分鐘,從第二天開始,他每天閱讀此書的時間比前一天增加10分鐘,則他恰好讀完《三國演義》的日期為()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日12.隨著城市生活節奏的加快,網上訂餐成為很多上班族的選擇,下表是某外賣騎手某時間段訂餐數量與送餐里程的統計數據表:訂餐數/份122331送餐里程/里153045現已求得上表數據的回歸方程中的值為1.5,則據此回歸模型可以預測,訂餐100份外賣騎手所行駛的路程約為()A.155里 B.145里C.147里 D.148里二、填空題:本題共4小題,每小題5分,共20分。13.設、為正數,若,則的最小值是______,此時______.14.總書記在“十九大”報告中指出:堅定文化自信,推動中華優秀傳統文化創造性轉化.“楊輝三角”揭示了二項式系數在三角形中的一種幾何排列規律,最早在中國南宋數學家楊輝1261年所著的《詳解九章算法》一書中出現,歐洲數學家帕斯卡在1654年才發現這一規律,比楊輝要晚近四百年.“楊輝三角”是中國數學史上的一個偉大成就,激發起一批又一批數學愛好者的探究欲望.如圖所示,在由二項式系數所構成的“楊輝三角中,第10行第8個數是______15.機動車駕駛考試是為了獲得機動車駕駛證的考試,采用全國統一的考試科目內容及合格標準,包括科目一理論考試、科目二場地駕駛技能考試、科目三道路駕駛技能考試和科目四安全文明常識考試共四項考試,考生應依次參加四項考試,前一項考試合格后才能報名參加后一項考試,考試不合格則需另行交費預約再次補考.據公安部門通報,佛山市四項考試的合格率依次為,,,,且各項考試是否通過互不影響,則一位佛山公民通過駕考四項考試至多需要補考一次的概率為______16.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中國男子籃球職業聯賽(ChineseBasketballAssociation),簡稱中職籃(CBA),由中國國家體育總局籃球運動管理中心舉辦的男子職業籃球賽事,旨在全面提高中國籃球運動水平,其中誕生了姚明、王治郅、易建聯、朱芳雨等球星.該比賽分為常規賽和季后賽.由于新冠疫情關系,某年聯賽采用賽會制:所有球隊集中在同一個地方比賽,分兩個階段進行,每個階段采用循環賽,分主場比賽和客場比賽,積分排名前8球隊進入季后賽.下表是A隊在常規賽60場比賽中的比賽結果記錄表.階段比賽場數主場場數獲勝場數主場獲勝場數第一階段30152010第二階段30152515(1)根據表中數據,完成下面列聯表:A隊勝A隊負合計主場5客場20合計60(2)根據(1)中列聯表,判斷是否有90%的把握認為比賽的“主客場”與“勝負”之間有關?附:.0.1000.0500.025k2.7063.8415.02418.(12分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內角,,的對邊分別為,,,且___________.(1)求角的大小;(2)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.19.(12分)已知等差數列的前項和為,,且.(1)求數列的通項公式;(2)證明:數列的前項和.20.(12分)已知圓C:x2+y2+2ax﹣3=0,且圓C上存在兩點關于直線3x﹣2y﹣3=0對稱.(1)求圓C的半徑r;(2)若直線l過點A(2,),且與圓C交于MN,兩點,|MN|=2,求直線l的方程.21.(12分)若等比數列的各項為正,前項和為,且,.(1)求數列的通項公式;(2)若是以1為首項,1為公差的等差數列,求數列的前項和.22.(10分)數列{}的首項為,且(1)證明數列為等比數列,并求數列{}的通項公式;(2)若,求數列{}的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據題意作出示意圖,然后結合余弦定理解三角形即可求出結果.【詳解】設爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側,,,,設,則,解得,則爆炸點與觀測點的距離為,故選:D.2、A【解析】根據等比中項的性質和等差數列的通項公式建立方程,可解得公差d得選項.【詳解】解:因為在等差數列中,,且,,,構成等比數列,所以,即,所以,解得或,故選:A.3、B【解析】根據題圖有且,結合五點法求參數,即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B4、D【解析】根據特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D5、B【解析】首先確定幾何體的空間結構特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B6、D【解析】根據推出關系和集合的包含關系判斷A,根據全稱命題的否定形式可判斷B,根據對鉤函數性質即三角函數的性質可判斷C,根據反函數的圖像性質可判斷D.【詳解】解:對于選項A:是的真子集,所以命題p是q的充分不必要條件,故A錯誤;對于選項B:命題“”的否定是“”,故B錯誤;對于選項C:函數,當時,,函數單調遞減,當時取最小值,故C錯誤;對于選項D:與互為反函數,故圖象關于直線y=x對稱,故D正確.7、B【解析】根據平均數、標準差、中位數及眾數的概念即得.【詳解】根據平均數、中位數、眾數的概念可知,平均數、中位數、眾數描述數據的集中趨勢,標準差描述數據的波動大小估計數據的穩定程度.故選:B.8、B【解析】根據數陣可知第行為,利用等差數列求和,即可得到答案;【詳解】根據數陣可知第行為,,故選:B9、D【解析】根據全面積得到正方體的棱長,再由勾股定理計算對角線.【詳解】設正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D10、C【解析】取的中點,連接,易證平面,進一步得到線面角,再解三角形即可.【詳解】如圖,取的中點,連接,三棱柱為直三棱柱,則平面,又平面,所以,又由題意可知為等腰直角三角形,且為斜邊的中點,從而,而平面,平面,且,所以平面,則為與平面所成的角.在直角中,.故選:C11、B【解析】由等差數列前n項和列不等式求解即可.【詳解】由題知,每天的讀書時間為等差數列,首項為20,公差為10,記n天讀完.則40小時=2400分鐘,令,得或(舍去),故,即第21天剛好讀完,日期為2022年1月9日.故選:B12、C【解析】由統計數據求樣本中心,根據樣本中心在回歸直線上求得,即可得回歸方程,進而估計時的y值即可.【詳解】由題意:,,則,可得,故,當時,.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.4②.【解析】巧用“1”改變目標式子的結果,借助均值不等式求最值即可.【詳解】,當且僅當即,時等號成立.故答案為,【點睛】本題考查最值的求法,注意運用“1”的代換法和基本不等式,考查運算能力,屬于中檔題14、120【解析】根據二項式的展開式系數的相關知識即可求解.【詳解】因為,二項式展開式第項的系數為,所以,第10行第8個數是.故答案為:12015、【解析】至多需要補考一次,分5種情況分別計算后再求和即可.【詳解】不需要補考就通過的概率為;僅補考科目一就通過的概率為;僅補考科目二就通過的概率為;僅補考科目三就通過的概率為;僅補考科目三就通過的概率為,一位佛山公民通過駕考四項考試至多需要補考一次的概率為.故答案為:16、【解析】根據離心率得出,結合得出關系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)填表見解析(2)沒有【解析】(1)由A隊在常規賽60場比賽中的比賽結果記錄表可得答案;(2)根據(1)中的列聯表,代入可得答案.【小問1詳解】(1)根據表格信息得到列聯表:A隊勝A隊負合計主場25530客場201030合計451560【小問2詳解】所以沒有90%的把握認為比賽的“主客場”與“勝負”之間有關.18、(1)(2)【解析】(1)若選①,則根據正弦定理,邊化角,結合二倍角公式,求得,可得答案;若選②,則根據余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進而求得,設,,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設,則,則,即,解得,或(舍去)故.19、(1)(2)證明見解析.【解析】(1)設等差數列的公差為,根據題意可得出關于、的方程組,解出這兩個量的值,可得出數列的通項公式;(2)求得,利用裂項法可求得,即可證得原不等式成立.【小問1詳解】解:設等差數列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.20、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根據對稱性可知直線m過圓心C.代入后可求a,進而可求半徑;(2)先求出圓心到直線l的距離,然后結合直線與圓相交的弦長公式可求.【小問1詳解】解:圓C的標準方程為,圓心為.因為圓C關于直線m對稱,所以直線m過圓心C.將代入,解得.此時圓C的標準方程為,半徑r=2.【小問2詳解】解:設圓心到直線距離為d,則d===1,①當直線l斜率不存在時,直線方程l為x=2,符合條件.②當直線l斜率存在時,設直線l方程為y﹣=k(x﹣2),即x﹣y﹣2k+=0,所以圓心C到直線l的距離d==1,解得,k=﹣,直線l的方程為x+﹣3=0,綜上所述,直線l的方程為x﹣2=0或x+﹣3=0.21、(1)(2)【解析】(1)設公比為,則由已知可得,求出公比,再求出首項,從而可求出數列的通項公式;(2)由已知可得,而,所以,然后利用錯位相減法可求得結果【小問1詳解】設各項為正的等比數列的公比為,,,則,,,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 45388.1-2025工業過程測量、控制和自動化第1部分:工業設施和智能電網之間的系統接口
- 天然氣輸配過程中能耗降低技術考核試卷
- 橡膠制品的供應鏈管理與協同創新考核試卷
- 綠色農業與食品安全考核試卷
- 寶石的結晶學與晶體生長研究進展評價考核試卷
- 禮儀用品企業環境管理體系考核試卷
- 遼寧省葫蘆島市六校聯考2025屆普通高中畢業班教學質量監測物理試題含解析
- 昆山杜克大學《學校體育學A》2023-2024學年第一學期期末試卷
- 永州市冷水灘區2025屆三年級數學第二學期期末統考模擬試題含解析
- 山東醫學高等??茖W?!稊祵W規劃》2023-2024學年第一學期期末試卷
- 山東省高中名校2025屆高三4月校際聯合檢測大聯考生物試題及答案
- 2025年武漢數學四調試題及答案
- 【MOOC】數學建模精講-西南交通大學 中國大學慕課MOOC答案
- 職業病防護設施與個體防護用品的使用和維護
- 2024年全國高中數學聯賽北京賽區預賽一試試題(解析版)
- 綠化養護服務投標方案(技術標)
- 中國紡織文化智慧樹知到期末考試答案2024年
- (正式版)HGT 6313-2024 化工園區智慧化評價導則
- GB/T 3091-2015低壓流體輸送用焊接鋼管
- 實際控制人股東會決議
- 混凝土攪拌機設計論文
評論
0/150
提交評論