




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年西南大學(xué)附中高二上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.72.若數(shù)列滿足,則()A.2 B.6C.12 D.203.已知為圓:上任意一點,則的最小值為()A. B.C. D.4.已知三個頂點都在拋物線上,且為拋物線的焦點,若,則()A.6 B.8C.10 D.125.已知兩條直線:,:,且,則的值為()A.-2 B.1C.-2或1 D.2或-16.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.7.已知兩個向量,,且,則的值為()A.1 B.2C.4 D.88.我們知道∶用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于()A. B.C. D.19.拋物線的準線方程是()A. B.C. D.10.若兩直線與互相垂直,則k的值為()A.1 B.-1C.-1或1 D.211.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點為,極值點為,則()A. B.0C.1 D.212.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和,則該數(shù)列的首項__________,通項公式__________.14.已知數(shù)列的前n項和,則其通項公式______15.曲線在x=1處的切線方程為__________.16.函數(shù)的圖象在點處的切線的方程是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)的極值;(2)若存在,使不等式成立,求實數(shù)的取值范圍.18.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設(shè),數(shù)列的前項和為,求使成立的的最小值.19.(12分)如圖,已知直三棱柱中,,,E,F(xiàn)分別為AC和的中點,D為棱上的一點.(1)證明:;(2)當(dāng)平面DEF與平面所成的銳二面角的余弦值為時,求點B到平面DFE距離.20.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當(dāng)直線的傾斜角為銳角時,求的取值范圍21.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.22.(10分)已知圓C經(jīng)過點,,且圓心C在直線上(1)求圓C的標準方程;(2)過點向圓C引兩條切線PD,PE,切點分別為D,E,求切線PD,PE的方程,并求弦DE的長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設(shè)橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.2、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D3、C【解析】設(shè),則的幾何意義為圓上的點和定點連線的斜率,利用直線和圓相切,即可求出的最小值;【詳解】圓,它圓心是,半徑為1,設(shè),則,即,當(dāng)直線和圓相切時,有,可得,,的最小值為:,故選:4、D【解析】設(shè),,,由向量關(guān)系化為坐標關(guān)系,再結(jié)合拋物線的焦半徑公式即可計算【詳解】由得焦點,準線方程為,設(shè),,由得則,化簡得所以故選:D5、B【解析】兩直線平行,傾斜角相等,斜率均不存在或斜率存在且相等,據(jù)此即可求解.【詳解】:,:斜率不可能同時不存在,∴和斜率相等,則或,∵m=-2時,和重合,故m=1.另解:,故m=1.故選:B.6、D【解析】根據(jù)拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設(shè)為:則準線方程為:解得:則拋物線的標準方程為:故選:D7、C【解析】由,可知,使,利用向量的數(shù)乘運算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點睛】思路點睛:在解決有關(guān)平行的問題時,通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉(zhuǎn)化為方程組求解;本題也可以利用坐標成比例求解,即由,得,求出m,n.8、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當(dāng)?shù)钠矫嬷苯亲鴺讼担傻肅的坐標,設(shè)拋物線的方程,將C的坐標代入求出拋物線的方程,進而可得焦點到其準線的距離【詳解】設(shè)AB,CD的交點為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點,所以,由題意建立適當(dāng)?shù)淖鴺讼担訠P為y軸以O(shè)E為x軸,E為坐標原點,如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點坐標代入可得,所以,所以拋物線的方程為∶,所以焦點坐標為,準線方程為,所以焦點到其準線的距離為故選:C9、D【解析】將拋物線的方程化為標準方程,可得出該拋物線的準線方程.【詳解】拋物線的標準方程為,則,可得,因此,該拋物線的準線方程為.故選:D.10、B【解析】根據(jù)互相垂直的兩直線的性質(zhì)進行求解即可.【詳解】由,因此直線的斜率為,直線的斜率為,因為兩直線與互相垂直,所以,故選:B11、C【解析】令可求得其零點,即的值,再利用導(dǎo)數(shù)可求得其極值點,即的值,從而可得答案【詳解】解:,當(dāng)時,,即,解得;當(dāng)時,恒成立,的零點為又當(dāng)時,為增函數(shù),故在,上無極值點;當(dāng)時,,,當(dāng)時,,當(dāng)時,,時,取到極小值,即的極值點,故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點,考查分段函數(shù)的應(yīng)用,突出分析運算能力的考查,屬于中檔題12、D【解析】根據(jù)正方體的性質(zhì),在直角△中應(yīng)用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.;②..【解析】空一:利用代入法直接進行求解即可;空二:利用之間的關(guān)系進行求解即可.【詳解】空一:;空二:當(dāng)時,,顯然不適合上式,所以,故答案為:;14、【解析】利用當(dāng)時,,可求出此時的通項公式,驗證n=1時是否適合,可得答案.【詳解】當(dāng)時,,當(dāng)時,不適合上式,∴,故答案為:.15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.16、【解析】求導(dǎo),求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在上遞增,在上遞減,極大值為,無極小值(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的符號求得單調(diào)區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問題轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出函數(shù)的最大值即可得出答案.【小問1詳解】解:當(dāng)時,,則,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為,無極小值;【小問2詳解】解:若存在,使不等式成立,則,即,則問題轉(zhuǎn)化為,令,,,當(dāng)時,,當(dāng)時,,所以函數(shù)在遞增,在上遞減,所以,所以.18、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當(dāng)時,解得;當(dāng)時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當(dāng)為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當(dāng)為奇數(shù)時,,不存在最小的值,故當(dāng)為48時,滿足條件.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用向量法證得.(2)利用平面DEF與平面所成的銳二面角的余弦值列方程,求得,結(jié)合向量法求得到平面的距離.【小問1詳解】以B為坐標原點,為x軸正方向建立如圖所示的建立空間直角坐標系.設(shè),可得,,,.,.因為,所以.【小問2詳解】,設(shè)為平面DEF的法向量,則,即,可取.因為平面的法向量為,所以.由題設(shè),可得,所以.點B到DFE平面距離.20、(1)(2)【解析】(1)根據(jù)橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設(shè)出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關(guān)系,利用直線方程求出點S、T的坐標,再根據(jù)確定的表達式,將根與系數(shù)的關(guān)系式代入化簡,求得結(jié)果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當(dāng)直線l的傾斜角為銳角時,設(shè),設(shè)直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是21、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據(jù)全稱命題與存在性命題的關(guān)系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據(jù)全稱命題與存在性命題關(guān)系,可得:命題的否定為.因為,所以命題為真命題.22、(1)(2)或,【解析】(1)設(shè)圓心,根據(jù)圓心在直線上及圓過兩點建立方程求解即可;(2)分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市大學(xué)附屬中學(xué)2025屆高三年級第二次模擬考試數(shù)學(xué)試題試卷
- 湖南省岳陽市2025屆高三教學(xué)質(zhì)量監(jiān)測 (二)思想政治試題(含解析)
- 2025年華南海關(guān)實施封控指定供應(yīng)商招標采購項目合同簡則訂貨協(xié)議書x
- 山東省職教高考(電子商務(wù)專業(yè))綜合知識備考試題庫大全-下部分
- 汽車線束培訓(xùn)班
- 檔案管理制度分類
- 25年4月腦腫瘤影像分割算法分包協(xié)議
- 財務(wù)顧問聘用合同模板
- 導(dǎo)演勞務(wù)合同二零二五年
- 租房委托書經(jīng)典范例二零二五年
- 2024版醫(yī)療廢物分類目錄解讀
- 市場營銷策劃(本)-形考任務(wù)三(第八~十章)-國開(CQ)-參考資料
- 2024-2030年中國情趣用品行業(yè)市場全景分析及投資前景展望報告
- 2024年漳州人才發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 《化妝品穩(wěn)定性試驗規(guī)范》
- 建筑業(yè)建筑工程施工安全管理實踐報告
- 園長指導(dǎo)保教活動制度
- 幼兒園大班科學(xué)課件:《植物的生長》
- 中醫(yī)禁食療法專家共識護理課件
- 管理溝通-原理、策略及應(yīng)用(第二版)教學(xué)課件1
- 闌尾粘液腺癌護理查房
評論
0/150
提交評論