




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
FacelandmarkdetectionusingCNN
Task
Theobjectiveofthistaskistopredictkeypointpositionsonfaceimages.
Usage
trackingfacesinimagesandvideo
analyzingfacialexpressions
detectingdysmorphicfacialsignsformedicaldiagnosis
biometrics/facerecognition
Method
DeepLearning
CNNregression
ComputerVision
FacelandmarkdetectionusingCNN
SomeDatasets
CUHK: MALF&MTLF
12995,20000images
5keypoints
Kaggle: FacialKeypointDetection
7049Images
96x96
15keypoints
ComputerVision
/notes/2014/12/17/using-
convolutional-neural-nets-to-detect-facial-keypoints-thutttop:r/ia/lm/#mthlaeb-.hk/projects/TCDCN.ht
FacelandmarkdetectionusingCNN
Method
CNN
Regression
Whatlossshouldweuse?
ComputerVision
.hk/projects/TCDCN.ht
ml
FacelandmarkdetectionusingCNN
Method
CNN
Regression
Whatlossshouldweuse?
Consider:
Whatlabelwehave?
Whattargetwewant?
Howtocomputeloss?
ComputerVision
.hk/projects/TCDCN.ht
ml
FacelandmarkdetectionusingCNN
Method
CNN
Regression
Howtocomputeloss?
Whatlossshouldweuse?
ComputerVision
Consider:
Whatlabelwehave?
Keypoints,
e.g.,{(x1,y1),(x2,y2)…
Whattargetwewant?
Locationsofkeypoints
.hk/projects/TCDC
N.html
FacelandmarkdetectionusingCNN
?
ComputerVision
10 E
/.hk/projects/TCDCN.html
10
GroundTruth
Loss
FacelandmarkdetectionusingCNN
?
ComputerVision
FacelandmarkdetectionusingCNN
?
ComputerVision
Schedule
FacelandmarkdetectionusingCNN
CNNregression
Faciallandmarkdetection
GenderClassificationonFaceimageusingCNN
TransferLearning
AdvancedTopics
RNN/LSTMincomputervision
Cuttingedgetechniquesindeeplearning
ClassSummary
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Problem:
Estimategender(Male/Female)givenafaceimage
Data:
FaceImage
GenderInformation(2classproblem)
Database:
CUHK:MALF&MTLF
CUHK:CelebA
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
CNN
Whatisourtrainingdata?
Faceimage
Gender:{0,1}=>{Male,Female}
Howtoorganizethetraining?
Trainfromscratch
Usepre-trainedmodelandfine-tuning
Whatnetworkshouldweuse?
Whatlossshouldweuse?
Howtotestourmodel?
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Whatisourtrainingdata?
Faceimage
Gender:{0,1}=>{Male,Female}
Howtoorganizethetraining?
Trainfromscratch
Usepre-trainedmodelandfine-tuning
Whatnetworkshouldweuse?
AlexNet,VGG,ResNet18,etc…
Whatlossshouldweuse?
Softmax
CrossEntropy
Howtotestourmodel?
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
Usepre-trainedmodelandfine-tuning
Idea:
FaceRecognitionmodel
+
FacewithGenderData
+
Training
=
GenderModel
ComputerVision
Fine-tuningtakesanalreadylearnedmodel,adaptsthearchitecture,andresumestrainingfromthealreadylearnedmodelweights.
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
Usepre-trainedmodelandfine-tuning
Idea:
FaceRecognitionmodel
+
FacewithGenderData
+
Training
=
GenderModel
TransferLearning
ComputerVision
FaceGenderClassification
GenderClassificationonFaceimageusingCNN
Method:
Usepre-trainedmodelandfine-tuning
Pre-trainedmodel:
VGGFaceRecognitionmodel(forclassificatione.g.,1000identities)
Fine-tunethenet:
FaceGenderData
Similarnetworkarchitecture
Changelastlayer(s)tothegenderclassificationtask
Extension:
Task1
Task2
Task3
Multi-taskDCNN
ComputerVision
Schedule
FacelandmarkdetectionusingCNN
CNNregression
Faciallandmarkdetection
GenderClassificationonFaceimageusingCNN
TransferLearning
AdvancedTopics
RNN/LSTMincomputervision
Activationsfunctions
AdvancedLayers
AdvancedNetworkarchitectures
TrainingTricks
ClassSummary
ComputerVision
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
ComputerVision
Aloopallowsinformationtobepassedfromonestepofthenetworktothenext
http://colah.github.io/posts/2015-08-Understanding-
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
WhyweneedRNN?
ComputerVision
Handwave?Standup?
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
RNNProblem
LSTM
Long-ShortTermMemory
ComputerVision
StandardRNN
LSTM
RNN/LSTMinComputerVision
RecurrentNeuralNetwork(RNN)
ApplicationsinComputervision:
ObjectTracking
ActionRecognition
VideoCaptioning
Videoanalysis
Imagegeneralization
Applicationsinothermlarea:
Translation
NLP(e.g.,wordprediction)
Speechrecognition
ComputerVision
AdvancedTopics
ActivationFunction
Sigmoid,Tanh,ReLU
AdvancedActivationFunctions:
LeakyReLU
ParametricReLU
RandomizedRuLU
ELU
ComputerVision
AdvancedTopics
AdvancedLayers
DilatedConv
BNLayer
RecurrentLayer
RNN
LSTM
ComputerVision
AdvancedTopics
AdvancedLayers
DilatedConv
ComputerVision
Dilatedconvolutions“inflate”thekernelbyinsertingspacesbetweenthekernelelements.
largerreceptivefield,
efficientcomputationandlessermemoryconsumption
Poolingmakesreceptivefieldsmallerandsmaller
Up-samplingcannotrestorelostinformation
Dilatedconvhelpkeepthereceptivefiled
AdvancedTopics
BNLayer
IssuesWithTrainingDeepNeuralNetworks
InternalCovariateshift
VanishingGradient
AdvantagesofBN:
Reducesinternalcovariantshift.
t
Reducesthedependenceofgradientsonscaleoftheparametersortheirinitialvalues.
Regularizesthemodelandreducestheneedfordropout,localresponsenormalizationandotherregularizationtechniques.
Allowsuseofsaturatingnonlinearitiesandhigherlearningrates.
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
DenseNet
ResNext
SqueezeNet
TinyDarknet
ComputerVision
AdvancedTopics
NetworkStructure
1x1conv
Combinemultiplechannels
Dimensionreduction
ComputerVision
1x1convWith32
56 filters 56
Eachfilter
56 hassize 56
64 1x1x64,and 32
performsa64dimdotproduct
TrainingTricks
GPU 分布式訓(xùn)練
Synchronous
PlacesanindividualmodelreplicaoneachGPU.SplitthebatchacrosstheGPUs.
UpdatesmodelparameterssynchronouslybywaitingforallGPUstofinishprocessingabatchofdata.
Asynchronous
ComputerVision
TrainingTricks
GPU 分布式訓(xùn)練
Synchronous
“l(fā)astexecutor”effect
ComputerVision
synchronoussystemshavetowaitontheslowestexecutorbeforecompletingeachiteration.
TrainingTricks
GPU 分布式訓(xùn)練
Asynchronous
Stalegradientproblem
ComputerVision
TrainingTricks
DataNormalization
InputData
Continuousdata:
Normalizeto[0,1]or[-1,1],ormean=0&std=1
DiscreteLabeldata: Onehotvector
E.g.,3classes[0,1,2] ?[[1,0,0],[0,1,0],[0,0,1]]
ComputerVision
Note:Normalizationmethodintrainingantestingmustbethesame!
TrainingTricks
WeightInitialization
Principle:
Nottoolarge,Nottoosmall
Xavier
Gaussian
biasusuallysettoconstant(e.g.,0)
Etc.
ComputerVision
TrainingTricks
EpochandIteration
EpochUsually>>1
#ofIterations=#ofEpoch*data_size/batch_size
Small#ofEpoch:
Underfitting
Large#ofEpoch:
Overfitting
Howtodecide?
Earlystopping
ComputerVision
TrainingTricks
LearningRate
Oneofthemostimportantparamintraining
Toosmall:
Slow,sometimesnotconverge
Toolarge:
Noconvergence
Usuallyrange:
0.1---1e-6
Howtodecide?
Visualizetraining
TrainingfromscratchandFinetuning
ComputerVision
TrainingTricks
Activationfunction
Hiddenlayers:
ReLUandLeakyRelu
LSTM:
SigmoidandTanh
ComputerVision
OutputLayers:
Classification:Softmax
Regression:Identity
no-opactivation,usefultoimplementlinearbottleneck,returnsf(x)=x
TrainingTricks
Lossfunction:
Yournet’spurposedeterminethelossfunctionyouuse.
Forexample,
inclassificationproblem:usemulticlasscrossentropyloss.
inregressionproblem:useEuclideanloss.
ComputerVision
TrainingTricks
Regularization:
Helppreventoverfitting
L1andL2regularization
UsuallyL2,decay1e-3to1e-6
Dropout
Usually0.3or0.5
EarlyStopping
ComputerVision
TrainingTricks
BatchSize:
Toosmall:
Slowtraining
DonotutilizeGPU
Toolarge:
Overfitting(ICLR2017paper)
Usually:
16,32,128…
ComputerVision
TrainingTricks
Solver/Optimizer:
SGD
Momentum
Adam/RMSProp
ComputerVision
Schedule
FacelandmarkdetectionusingCNN
CNNregression
Faciallandmarkdetection
GenderClassificationonFaceimageusingCNN
TransferLearning
AdvancedTopics
RNN/LSTMincomputervision
Activationsfunctions
AdvancedLayers
AdvancedNetworkarchitectures
TrainingTricks
ClassSummary
ComputerVision
ComputerVision
ClassSummary
Week 1
機器的力量:將數(shù)據(jù)轉(zhuǎn)化為知識
機器學(xué)習(xí)的整體概念
監(jiān)督學(xué)習(xí),非監(jiān)督學(xué)習(xí),增強學(xué)習(xí)
機器學(xué)習(xí)系統(tǒng)的Roadmap
Machinelearning經(jīng)典算法:機器學(xué)習(xí)≠深度學(xué)習(xí)
K-meansclustering
K-NN,SVM
Regression Task
Experience
LearnedProgram
Tas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公路貨運行業(yè)2025數(shù)字化轉(zhuǎn)型與智能化運輸效率提升策略報告
- 敘事中的所有權(quán)與記憶文學(xué)概論試題及答案
- 漢語互助學(xué)習(xí)小組經(jīng)驗分享試題及答案
- 2025年農(nóng)村電商扶貧資金申請及項目管理報告
- 2025年計算機一級Msoffice考試回顧試題及答案
- 新穎2025年計算機一級Ms Office考試試題及答案
- 借鑒成功的現(xiàn)代漢語學(xué)習(xí)案例試題及答案
- WPS動態(tài)鏈接與更新試題及答案
- 文學(xué)敘述中的時間與空間研究試題及答案
- 現(xiàn)代漢語寫作技巧的提升方法試題及答案
- 高中生物選擇性必修1基礎(chǔ)背誦 課件
- 五年級道德與法治下冊 (富起來到強起來)百年追夢 復(fù)興中華教學(xué)課件
- 中醫(yī)適宜技術(shù)操作規(guī)程及評分標(biāo)準(zhǔn)
- 2023-2024學(xué)年貴州省六盤水市小學(xué)語文六年級期末提升測試題詳細(xì)參考答案解析
- 江蘇南通軌道交通集團(tuán)有限公司運營分公司社會招聘工作人員考試真題及答案2022
- 頸椎JOA腰椎JOA 評分-表格-日本骨科協(xié)會評估治療
- 人工智能時代小學(xué)勞動教育的現(xiàn)實困境與突破路徑 論文
- 野生動物管理學(xué)智慧樹知到答案章節(jié)測試2023年東北林業(yè)大學(xué)
- 國際友人在中國智慧樹知到答案章節(jié)測試2023年西北大學(xué)
- 函數(shù)的零點與方程的解(說課稿)
- 深基坑專項施工方案(鋼板樁支護(hù))
評論
0/150
提交評論