




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2018年高中數學總復習高考中檔大題專項訓練-立體幾何與空間向量1.如圖,菱形ABCD的對角線AC與BD交于點O,AB=5,AC=6,點E,F分別在AD,CD上,AE=CF=eq\f(5,4),EF交BD于點H.將△DEF沿EF折到△D′EF的位置,OD′=eq\r(10).(1)證明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)證明由已知得AC⊥BD,AD=CD.又由AE=CF得eq\f(AE,AD)=eq\f(CF,CD),故AC∥EF.因此EF⊥HD,從而EF⊥D′H.由AB=5,AC=6得DO=BO=eq\r(AB2-AO2)=4.由EF∥AC得eq\f(OH,DO)=eq\f(AE,AD)=eq\f(1,4).所以OH=1,D′H=DH=3.于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.又D′H⊥EF,而OH∩EF=H,所以D′H⊥平面ABCD.(2)解如圖,以H為坐標原點,eq\o(HF,\s\up6(→))的方向為x軸正方向,eq\o(HD,\s\up6(→))的方向為y軸正方向,eq\o(HD′,\s\up6())的方向為z軸正方向,建立空間直角坐標系,則H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D′(0,0,3),eq\o(AB,\s\up6(→))=(3,-4,0),eq\o(AC,\s\up6(→))=(6,0,0),eq\o(AD′,\s\up6(→))=(3,1,3).設m=(x1,y1,z1)是平面ABD′的法向量,則eq\b\lc\{\rc\(\a\vs4\al\co1(m·\o(AB,\s\up6(→))=0,,m·\o(AD′,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(3x1-4y1=0,,3x1+y1+3z1=0,))所以可取m=(4,3,-5).設n=(x2,y2,z2)是平面ACD′的法向量,則eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(AC,\s\up6(→))=0,,n·\o(AD′,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(6x2=0,,3x2+y2+3z2=0,))所以可取n=(0,-3,1).于是cos〈m,n〉=eq\f(m·n,|m||n|)=eq\f(-14,\r(50)×\r(10))=-eq\f(7\r(5),25).sin〈m,n〉=eq\f(2\r(95),25).因此二面角B-D′A-C的正弦值是eq\f(2\r(95),25).
4.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=eq\f(1,2)AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(1)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;(2)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB?平面PBE,CM?平面PBE.所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(2)方法一由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.從而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.設BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.且PA∩AH=A,于是CE⊥平面PAH.又CE?平面PCE,所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以∠APH是PA與平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=eq\f(\r(2),2).在Rt△PAH中,PH=eq\r(PA2+AH2)=eq\f(3\r(2),2).所以sin∠APH=eq\f(AH,PH)=eq\f(1,3).方法二由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.從而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由∠PAB=90°,且PA與CD所成的角為90°,可得PA⊥平面ABCD.設BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以eq\o(AD,\s\up6(→)),eq\o(AP,\s\up6(→))的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標系,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0).所以eq\o(PE,\s\up6(→))=(1,0,-2),eq\o(EC,\s\up6(→))=(1,1,0),eq\o(AP,\s\up6(→))=(0,0,2).設平面PCE的法向量為n=(x,y,z).由eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(PE,\s\up6(→))=0,,n·\o(EC,\s\up6(→))=0.))得eq\b\lc\{\rc\(\a\vs4\al\co1(x-2z=0,,x+y=0.))設x=2,解得n=(2,-2,1).設直線PA與平面PCE所成的角為α,則sinα=eq\f(|n·\o(AP,\s\up6(→))|,|n|·|\o(AP,\s\up6(→))|)=eq\f(2,2×\r(22+-22+12))=eq\f(1,3).所以直線PA與平面PCE所成角的正弦值為eq\f(1,3).
5.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=eq\r(5).(1)求證:PD⊥平面PAB;(2)求直線PB與平面PCD所成角的正弦值;(3)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求eq\f(AM,AP)的值;若不存在,說明理由.(1)證明∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,又AB⊥AD,AB?平面ABCD,∴AB⊥平面PAD.∵PD?平面PAD,∴AB⊥PD,又PA⊥PD,PA∩AB=A,∴PD⊥平面PAB.(2)解取AD中點O,連接CO,PO.∵PA=PD,∴PO⊥AD.又∵PO?平面PAD,平面PAD⊥平面ABCD,∴PO⊥平面ABCD,∵CO?平面ABCD,∴PO⊥CO,∵AC=CD,∴CO⊥AD.以O為原點建立如圖所示空間直角坐標系.易知P(0,0,1),B(1,1,0),D(0,-1,0),C(2,0,0).則eq\o(PB,\s\up6(→))=(1,1,-1),eq\o(PD,\s\up6(→))=(0,-1,-1),eq\o(PC,\s\up6(→))=(2,0,-1).設n=(x0,y0,1)為平面PDC的一個法向量.由eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(PD,\s\up6(→))=0,,n·\o(PC,\s\up6(→))=0))得eq\b\lc\{\rc\(\a\vs4\al\co1(-y0-1=0,,2x0-1=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(y0=-1,,x0=\f(1,2).))即n=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),-1,1)).設PB與平面PCD的夾角為θ.則sinθ=|cos〈n,eq\o(PB,\s\up6(→))〉|=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(n·\o(PB,\s\up6(→)),|n||\o(PB,\s\up6(→))|)))=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(\f(1,2)-1-1,\r(\f(1,4)+1+1)×\r(3))))=eq\f(\r(3),3).(3)解設在棱PA上存在點M,使得BM∥平面PCD,則存在λ∈[0,1]使得eq\o(AM,\s\up6(→))=λeq\o(AP,\s\up6(→)),因此點M(0,1-λ,λ),eq\o(BM,\s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兼職司機聘用協議
- 健康養生咨詢及免責合同書
- 2025年防城港危險品考試題庫
- 環保建材采購及質量保證合同
- 農業合作社土地租賃協議書
- 農村林地合作經營合同
- 體育賽事贊助權益合作協議
- 員工全年收入及獎金明細證明(6篇)
- 音響設備制造與出口協議
- 企業營銷效果分析與跟蹤實施合作協議
- 虛擬地理環境智慧樹知到答案2024年黑龍江工程學院
- 公園設施維修投標方案
- 200903寶鋼大廈BA系統改造方案
- 圖書入庫登記表
- BMH型半門式起重機說明書
- 放射性的應用與防護教案
- 醫院崗位設置與人員編制標準[詳]
- 土地估價報告市場比較法(工業)模板2016.09.26
- 每日安全巡查記錄表
- 中醫醫院科主任科室管理通用考核表
- 《2021國標暖通圖集資料》96K150-3 圓錐形風帽
評論
0/150
提交評論